Subscribe free to our newsletters via your
. Space Industry and Business News .




STELLAR CHEMISTRY
Herschel Space Observatory study reveals galaxy-packed filament
by Staff Writers
Montreal, Canada (SPX) May 21, 2012


The Herschel Space Observatory has discovered a giant, galaxy-packed filament ablaze with billions of new stars. The filament connects two clusters of galaxies that, along with a third cluster, will smash together in several billion years and give rise to one of the largest galaxy superclusters in the universe.

The three galaxy clusters of the emerging supercluster, known as RCS2319, are seen in visible and X-ray light (purple) to the left. Observations by Herschel in infrared light appear to the right, with colored regions indicating greater infrared emissions. A white circle broadly outlines the 8 million light-year-long intergalactic filament in each image.

In visible light, the filament does not stand out because dust obscures the star-formation activity in distant galaxies. Telescopes like Herschel, however, can detect the infrared glow of this dust as it is heated by newborn stars.

The amount of infrared light suggests that the galaxies in the filament are cranking out the equivalent of about 1,000 new Suns in terms of mass per year. For comparison's sake, our Milky Way galaxy is producing about one Sun's mass-worth of new stars per year.

Notably, the third galaxy cluster is off the edge of the image on the right. The reason behind this apparent snub is that the original research proposal called for making a map centered on the top cluster. During the observing run, astronomers did not know the filament existed, so its eventual discovery serves as a nice example of scientific serendipity. The team is now aiming to perform further follow-up observations to examine the filament in more detail. Image Credit ESA, NASA, JPL-Caltech, CXC, McGill Univ. Original image reference

A McGill-led research team using the Herschel Space Observatory has discovered a giant, galaxy-packed filament ablaze with billions of new stars. The filament connects two clusters of galaxies that, along with a third cluster, will smash together and give rise to one of the largest galaxy superclusters in the universe.

The filament is the first structure of its kind spied in a critical era of cosmic buildup when colossal collections of galaxies called superclusters began to take shape. The glowing galactic bridge offers astronomers a unique opportunity to explore how galaxies evolve and merge to form superclusters.

"We are excited about this filament, because we think the intense star formation we see in its galaxies is related to the consolidation of the surrounding supercluster," said Kristen Coppin, a postdoctoral fellow in astrophysics at McGill and lead author of a new paper in Astrophysical Journal Letters.

"This luminous bridge of star formation gives us a snapshot of how the evolution of cosmic structure on very large scales affects the evolution of the individual galaxies trapped within it," said Jim Geach, a co-author also based at McGill.

The intergalactic filament, containing hundreds of galaxies, spans 8 million light-years and links two of the three clusters that make up a supercluster known as RCS2319. This emerging supercluster is an exceptionally rare, distant object whose light has taken more than seven billion years to reach us.

RCS2319 is the subject of a huge observational study, led by Professor Tracy Webb and her group at McGill's Department of Physics. Previous observations in visible and X-ray light had found the cluster cores and hinted at the presence of a filament. It was not until astronomers trained Herschel on the region, however, that the intense star-forming activity in the filament became clear.

Dust obscures much of the star-formation activity in the early universe, but telescopes like Herschel can detect the infrared glow of this dust as it is heated by nascent stars. (The Herschel Space Observatory is a European Space Agency mission with important NASA contributions.)

The amount of infrared light suggests that the galaxies in the filament are cranking out the equivalent of about 1,000 solar masses (the mass of our sun) of new stars per year. For comparison's sake, our Milky Way galaxy is producing about one solar mass-worth of new stars per year.

Researchers chalk up the blistering pace of star formation in the filament to the fact that galaxies within it are being crunched into a relatively small cosmic volume under the force of gravity.

"A high rate of interactions and mergers between galaxies could be disturbing the galaxies' gas reservoirs, igniting bursts of star formation," said Geach.

By studying the filament, astronomers will be able to explore the fundamental issue of whether "nature" versus "nurture" matters more in the life progression of a galaxy.

"Is the evolution of a galaxy dominated by intrinsic properties such as total mass, or do wider-scale cosmic environments largely determine how galaxies grow and change?" Geach asked.

"The role of the environment in influencing galactic evolution is one of the key questions of modern astrophysics."

The galaxies in the RCS2319 filament will eventually migrate toward the center of the emerging supercluster. Over the next seven to eight billion years, astronomers think RCS2319 will come to look like gargantuan superclusters in the local universe, like the nearby Coma cluster.

These advanced clusters are chock-full of "red and dead" elliptical galaxies that contain aged, reddish stars instead of young ones.

"The galaxies we are seeing as starbursts in RCS2319 are destined to become dead galaxies in the gravitational grip of one of the most massive structures in the universe," said Geach. "We're catching them at the most important stage of their evolution."

.


Related Links
Herschel at Caltech
Herschel at NASA
Herschel at ESA
McGill University
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
A deeper look at Centaurus A
Munich, Germany (SPX) May 19, 2012
Centaurus A, also known as NGC 5128, is a peculiar massive elliptical galaxy with a supermassive black hole at its heart. It lies about 12 million light-years away in the southern constellation of Centaurus (The Centaur) and has the distinction of being the most prominent radio galaxy in the sky. Astronomers think that the bright nucleus, strong radio emission and jet features of Centaurus ... read more


STELLAR CHEMISTRY
Loral-Built Nimiq 6 Satellite ly Performs Post-Launch Maneuvers

China firm buys AMC to create cinema giant

At seventh birthday, YouTube marks new milestones

SciTechTalk: Google to reign in Android

STELLAR CHEMISTRY
Second AEHF Military Communications Satellite Launched

Fourth Boeing-built WGS Satellite Accepted by USAF

Raytheon to Continue Supporting Coalition Forces' Information-Sharing Computer Network

Northrop Grumman Wins Contract for USAF Command and Control Modernization Program

STELLAR CHEMISTRY
SpaceX scrubs launch to ISS over rocket engine problem

SpaceX readies ambitious ISS launch

Japan in first commercial satellite launch

The numbers add up in Arianespace's latest commercial launch success with Ariane 5

STELLAR CHEMISTRY
Northrop Grumman Successfully Demonstrates New Target Location Module

Thousands of Young Adventurers Kept Safe with M2M Connectivity from Eseye

N. Korea denies jamming GPS of civilian aircraft

Habits and hidden journeys of ocean giants

STELLAR CHEMISTRY
China criticises US vote on Taiwan fighter jet sales

Peru to upgrade fast aging air force jets

Military aviation: a new bomber and the fifth generation fighter planes

Russia's military aircraft industry: overview and outlook

STELLAR CHEMISTRY
Researchers map path to quantum electronic devices

Fast, low-power, all-optical switch

SK Hynix pulls out of bid for Japan's Elpida

Electric charge disorder: A key to biological order?

STELLAR CHEMISTRY
Moscow court upholds ban against satellite image distributor

New Carbon-Counting Instrument Leaves the Nest

China launches new remote-sensing satellite

ESA declares end of mission for Envisat

STELLAR CHEMISTRY
Australian tug reaches ship adrift off Barrier Reef

Hungarian red mud plant ordered to solve dust scare

Nanotube 'sponge' has potential in oil spill cleanup

Plastic trash altering ocean habitats




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement