Space Industry and Business News  
IRON AND ICE
Hera's CubeSat to perform first radar probe of an asteroid
by Staff Writers
Paris (ESA) May 02, 2019

The Juventas CubeSat, to be delivered to the Didymos binary asteroid system by ESA's proposed Hera mission, will carry a low-frequency radar for subsurface sounding as well as a gravimeter to measure both asteroids' gravity fields. It will also perform radio science measurements and measure the forces involved in its concluding landing on the smaller of the two asteroids, at the end of its month-long mission.

Small enough to be an aircraft carry-on, the Juventas spacecraft nevertheless has big mission goals. Once in orbit around its target body, Juventas will unfurl an antenna larger than itself, to perform the very first subsurface radar survey of an asteroid.

ESA's proposed Hera mission for planetary defence will explore the twin Didymos asteroids, but it will not go there alone: it will also serve as mothership for Europe's first two 'CubeSats' to travel into deep space.

CubeSats are nanosatellite-class missions based on standardised 10-cm boxes, making maximum use of commercial off the shelf systems. Juventas will be a '6-unit' CubeSat, selected to fly aboard Hera along with the similarly-sized APEX Asteroid Prospection Explorer, built by a Swedish-Finnish-German-Czech consortium.

Juventas - the Roman name for the daughter of Hera - is being developed for ESA by the GomSpace company and GMV in Romania, together with consortia of additional partners developing the spacecraft instruments.

"We're packing a lot of complexity into the mission," notes GomSpace systems engineer Hannah Goldberg. "One of the biggest misconceptions about CubeSats is that they are simple, but we have all the same systems as a standard-sized spacecraft.

"Another reputation of CubeSats is that they don't do that much, but we have multiple mission goals over the course of our month-long mission around the smaller Didymos asteroid. One of our CubeSat units is devoted to our low-frequency radar instrument, which will be a first in asteroid science."

Juventas will deploy a metre and a half long radar antenna, which will unfurl like a tape measure, and was developed by Astronika in Poland. This instrument is based on the heritage of the CONSERT radar that flew on ESA's Rosetta comet chaser, overseen by Alain Herique of the Institut de Planetologie et d'Astrophysique de Grenoble (IPAG).

The radar signals should reach one hundred metres down, giving insight into the asteroid's internal structure. "Is it a rubble pile, or something more layered, or monolithic?" adds Hannah, who previously worked at asteroid mining company Planetary Resources before moving to GomSpace.

"This is the sort of information that is going to be essential for future mining missions, to estimate where the resources are, how mixed up they are, and how much effort will be required to extract them."

ESA radar specialist Christopher Buck has worked on the instrument design with IPAG: "Our radar instrument's size and power is much lower than those of previous missions, so what we're doing is using a pseudo-random code sequence in the signals - think of it a poor man's alternative. Navigation satellites use a comparable technique, allowing receivers to make up for their very low power.

"We send a series of signals possessing constantly shifting signal phase, then we gradually build up a picture by correlating the reflections of these signals, employing their phase shifts as our guide. One reason we are able to do this is that we will be orbiting around the asteroid relatively slowly, on the order of a few centimetres per second, giving us longer integration times compared to orbits around Earth or other planets."

The technology proved itself with the Rosetta, where the CONSERT radar peered deep inside comet 67P/Churyumov-Gerasimenko and helped locate the Philae lander on the comet's surface. Juventas uses a more compact 'monostatic' version of the design.

As Juventas orbits, the CubeSat will also be gathering data on the asteroid's gravity field using both a dedicated 3-axis 'gravimeter' - first developed by the Royal Observatory of Belgium for Japan's proposed Martian Moons eXploration mission - as well as its radio link back to Hera, measuring any Doppler shifting of communications signals caused by its proximity to the body.

"But the mission is being designed to operate with minimal contact with its mothership and the ground, operating autonomously for days at a time," says Hannah.

"This is a big difference from Earth orbit, where communications are much simpler and more frequent. So we will fly in what is called a 'self-stabilising terminator orbit' around the asteroid, perpendicular to the Sun, requiring minimal station-keeping manoeuvring."

The final phase of the mission will come with a precisely-controlled attempt to land on the asteroid.

"We'll have gyroscopes and accelerometers aboard, so we will capture the force of our impact, and any follow-on bouncing, to gain insight into the asteroid's surface properties - although we don't know how well Juventas will continue to operate once it finally touches down. If we are able to successfully operate after the impact, we will continue to take local gravity field measurements from the asteroid surface."

The Hera mission, including its two CubeSats, will be presented to ESA's Space19+ meeting this November, where Europe's space ministers will take a final decision on flying the mission.


Related Links
Hera at ESA
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
NASA chief calls for global effort to study asteroid threat
Washington (UPI) Apr 29, 2019
NASA Administrator Jim Bridenstine has called for more global participation in efforts to deflect asteroids that could collide with Earth. Bridenstine spoke to the 2019 Planetary Defense Conference in Washington, D.C., on Monday morning in an event that was streamed live online. The conference was organized by the International Association for the Advancement of Space Safety. "We have to use our systems our capabilities to ultimately get more data and we have to do it faster," Bridenstin ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Researchers discover surprising quantum effect in hard disk drive material

Flexible circuits for 3D printing

The first laser radio transmitter

Quantum gas turns supersolid

IRON AND ICE
Boeing awarded $605M for Air Force's 11th WGS comms satellite

SLAC develops novel compact antenna for communicating where radios fail

US Army selects Hughes for cooperative effort to upgrades NextGen Friendly Forces System

United Launch Alliance launches WGS-10 satellite for USAF

IRON AND ICE
IRON AND ICE
China launches new BeiDou satellite

Industry collaboration on avionics paves the way for GAINS navigation demonstration flights

Record-Breaking Satellite Advances NASA's Exploration of High-Altitude GPS

China, Arab states eye closer cooperation on satellite navigation to build "Space Silk Road"

IRON AND ICE
US Air Force F-35As conduct first combat mission

Lockheed awarded $1.1B contract for F-35 support

Hurricane repair work at Tyndall AFB halted as funds run out

Boeing awarded $5.7B for KC-46 Pegasus combat capability work

IRON AND ICE
HKUST physicist contributes to new record of quantum memory efficiency

Bridge over coupled waters: Scientists 3D-print all-liquid 'lab on a chip'

New robust device may scale up quantum tech, researchers say

Nanocomponent is a quantum leap for Danish physicists

IRON AND ICE
Scientists track giant ocean vortex from space

OCO-3 Ready to Extend NASA's Study of Carbon

NASA Instrument to More Accurately Measure Ozone Discovered by "Accident"

What's behind the ground-breaking 3D habitat map of the Great Barrier Reef

IRON AND ICE
Mozambique community shattered by trash deluge

Carbios plastic bottle recycling picks up backers

China plastic waste ban throws global recycling into chaos

USAID launches latest clean-up for Vietnam War-era Agent Orange site









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.