Space Industry and Business News  
ENERGY TECH
Heavy fermions get nuclear boost on way to superconductivity
by Staff Writers
Houston TX (SPX) Jan 29, 2016


This microscopic closeup shows a small sample of ytterbium dirhodium disilicide, one of the most-studied 'heavy fermion' composites. The scale bar in the center of the screen is one millimeter wide. Image courtesy Marc Tippmann/Technical University of Munich. For a larger version of this image please go here.

In a surprising find, physicists from the United States, Germany and China have discovered that nuclear effects help bring about superconductivity in ytterbium dirhodium disilicide (YRS), one of the most-studied materials in a class of quantum critical compounds known as "heavy fermions."

The discovery, which is described in this week's issue of Science, marks the first time that superconductivity has been observed in YRS, a composite material that physicists have studied for more than a decade in an effort to probe the quantum effects believed to underlie high-temperature superconductivity.

Rice University physicist and study co-author Qimiao Si said the research provides further evidence that unconventional superconductivity arises from "quantum criticality."

"There is already compelling evidence that unconventional superconductivity is linked in both copper-based and iron-based high-temperature superconductors to quantum fluctuations that alter the magnetic order of the materials at 'quantum critical points,' watershed thresholds that mark the transition from one quantum phase to another," Si said. "This work provides the first evidence that similar processes bring about superconductivity in the canonical heavy-fermion system YRS."

Electrons fall within a quantum category called fermions. Heavy fermions are composite materials that contain rare earth elements. Their name stems from the fact that at extremely low temperatures, typically less than 1 kelvin, electrons move through the material as if they were 1,000 times more massive than normal.

In the latest experiments, Si said, the measured heat capacity was so large that the electrons behaved as if they were heavier still - about 1 million times heavier than normal. This occurred as the YRS was cooled to just above the point of superconductivity, around 2 millikelvins.

Si, Rice's Harry C. and Olga K. Wiess Professor of Physics and Astronomy. also directs the Rice Center for Quantum Materials (RCQM). He said the research was conducted in collaboration with RCQM partners in Germany and China. Experiments were performed at the Walther Meissner Institute for Low Temperature Research at the Bavarian Academy of Sciences in Garching, Germany, and at the Max Planck Institute for Chemical Physics of Solids in Dresden, Germany. Theoretical work was performed at Rice and at Renmin University of China in Beijing.

Experiments overseen by the Meissner Institute's Erwin Schuberth and the Max Planck Institute's Frank Steglich offered the first glimpse of YRS' behavior at the quantum critical point. Schuberth, who has appointments at both institutes as well as the Technical University of Munich, said what appeared to be an increase in apparent mass was actually the clue that nuclear forces were at work.

"Nothing else could have accounted for such a large change," he said.

The bulk of experiments were performed in Garching, where Schuberth's team used "adiabatic magnetic cooling" and other specialized techniques to make its YRS samples ultracold, about 10 times colder than those in any previous YRS experiment; this is what allowed the team to discover superconductivity.

In analyzing the evidence, Si and fellow theorist Rong Yu of Renmin University found that the arrangement of inertial spins of the ytterbium nuclei in the YRS composite helped bring about superconductivity. He said the nuclear spins became coupled at extremely low temperatures and arranged in an ordered pattern that exposed the quantum criticality of the electrons.

"In YRS, the spins of electrons are locked in a pattern that varies periodically in space and is the hallmark of an electronic order known as anti-ferromagnetism," Si said. "An ordered arrangement of the nuclear spins acts to suppress the electronic order, and this exposes the electronic quantum criticality, which in turn drives unconventional superconductivity."

The discovery of superconductivity in YRS followed a search lasting more than a decade. Steglich said the previous experiments demonstrate that quantum criticality in YRS brings electrons to the verge of being both localized and itinerant, a condition that was predicted by Si and collaborators in a landmark 2001 theory.

Steglich said, "In previous experiments, an external magnetic field revealed a quantum critical point with a host of truly remarkable electronic properties that had been predicted by theory. But the magnetic field also created a condition that is inhospitable to superconductivity."

The current work succeeded in discovering superconductivity by reaching quantum criticality through the ordering of nuclear spins at ultralow temperatures, without applying an external magnetic field.

"It is remarkable that it takes an act of nuclear spins to produce quantum criticality at zero magnetic field and realize superconductivity," Steglich said.

Si said the new findings are important for the study of both heavy-fermion superconductivity and, more generally, the physics of quantum criticality.

"The work demonstrates that quantum criticality is a robust mechanism for bringing about unconventional superconductivity, not only in high-temperature superconductors, as had previously been shown, but also in heavy-fermion materials that are the canonical example of quantum critical behavior in every other respect," Si said.

Study co-authors include Marc Tippmann of the Meissner Institute; Lucia Steinke of both the Meissner Institute and the Max Planck Institute for Chemical Physics of Solids; Stefan Lausberg, Alexander Steppke, Manuel Brando and Christoph Geibel, all of the Max Planck Institute for Chemical Physics of Solids; and Cornelius Krellner of both the University of Frankfurt and the Max Planck Institute for Chemical Physics of Solids.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rice University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Creation of Jupiter interior, a step towards room temp superconductivity
Osaka, Japan (SPX) Dec 21, 2015
Hydrogen is the most abundant element in the universe, and a major component of stars such as the Sun, as well as gas-giant planets such as Jupiter and Saturn. In recent years, hydrogen's behavior at high temperature and high pressure has been in the realm of interest not only for planetary science, but also for fields such as materials science for the purpose of achieving a hydrogen energy soci ... read more


ENERGY TECH
Acoustic tweezers provide much needed pluck for 3-D bioprinting

Designing a pop-up future

Chanel swaps bling for eco-inspired haute couture

Material may offer cheaper alternative to smart windows

ENERGY TECH
Harris wins place on military communications contract

General Dynamics MUOS-Manpack radio supports government testing of MUOS network

Raytheon to produce, test Navy Multiband Terminals

ADS to build one of two satellites for future COMSAT NG system

ENERGY TECH
Ariane 5 is readied for an Arianespace leading customer Intelsat

Roscosmos Approves Delay of Eutelsat 9B Launch Due to Bad Weather

Assembly begins on 2nd Ariane 5 launcher for 2016

EpicNG satellite installed on Ariane 5 for launch

ENERGY TECH
PSLV launches India's 5th navigation satellite

Trimble to provide GPS survey systems for U.S. Marines

SMC releases RFP for GPS III Space Vehicles

GPS vultures swoop down on illegal dumps in Peru

ENERGY TECH
Graphene composite may keep wings ice-free

Russia's strategic bomber PAK DA may takeoff earlier than expected

Iran to buy 114 Airbuses to revamp ageing fleet

NASA-Funded Balloon Launches to Study Sun

ENERGY TECH
Switchable material could enable new memory chips

Molecular-like photochemistry from semiconductor nanocrystals

Physicists develop a cooling system for the processors of the future

Quantum computing is coming - are you prepared for it?

ENERGY TECH
SpaceX launches US-French oceans satellite

Flooding along the Mississippi seen from space

Fires burning in Africa and Asia cause high ozone in tropical Pacific

Satellites find sustainable energy in cities

ENERGY TECH
Toxic chemicals found in most outdoor gear: Greenpeace

Former US auto hub reeling from tainted water scandal

Most Chinese cities fail air quality standards in 2015: Greenpeace

Students design 'plant backpack' to combat air pollution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.