Space Industry and Business News  
Healthy Coastal Wetlands Would Adapt To Rising Oceans

"If the vegetation is intact, it holds the system in place and enhances the trapping of sediments and tends to minimize the erosion," Murray said. "Up to some high level of sea-level rise, the system is going to keep itself in place because of that vegetation."
by Staff Writers
Durham NC (SPX) Mar 29, 2007
Tidal marshes, which nurture marine life and reduce storm damage along many coastlines, should be able to adjust to rising sea levels and avoid being inundated and lost, if their vegetation isn't damaged and their supplies of upstream sediment aren't reduced, a new Duke University study suggests.

Such marshes "offer great value as buffers of coastal storms in cities such as New Orleans, which is separated from the Gulf of Mexico by marshlands," Matthew Kirwan and A. Brad Murray said in a report published online on Monday, March 26, in the journal "Proceedings of the National Academy of Sciences."

The researchers built a 3-D computer model that agrees with other recent work in suggesting that marshlands have some potential for adapting to environmental change. However, the Duke modeling also suggests that substantially disturbing the wetlands' plants or starving them of sediment could disrupt that equilibrium.

These coastal systems of water-tolerant plants and tidal channels also "provide highly productive habitat and serve as nursery grounds for a large number of commercially important fin and shellfish," according to the researchers. Murray is an associate professor of geomorphology and coastal processes at Duke's Nicholas School of the Environment and Earth Sciences. Kirwan, the report's first author, is a doctoral student working with Murray.

Despite those benefits, a variety of environmental changes often linked to humans -- including sea-level rise, sinking land and alterations to sand and silt supplies that anchor the wetland plants -- are "affecting coastal marshes worldwide," the scientists said.

The research was funded by the National Science Foundation and the Andrew W. Mellon Foundation.

The team's model, which was based partly on field studies done in South Carolina, and compared with observations in Louisiana, Massachusetts and British Columbia marshlands, uses computerized mathematical equations to help researchers evaluate the evolution of marsh shapes and complex ecosystems.

Other research teams have devised similar computer exercises, but Murray said Duke's version emphasizes how biology influences and interacts with physical erosion processes.

The model describes how vegetation and sediments can meld into living "platforms" that adjust to changing water levels. It also factors in how tidal creeks and channels can both supply silt and sand to the evolving matrix or help undo that process through erosion.

"With a steady, moderate rise in sea level, the model builds a marsh platform and channel network (that rises) with the rate of sea-level rise, meaning water depths and biological productivity remain temporarily constant," said the new report.

"If the vegetation is intact, it holds the system in place and enhances the trapping of sediments and tends to minimize the erosion," Murray said. "Up to some high level of sea-level rise, the system is going to keep itself in place because of that vegetation."

But the model also shows that removing some vegetation or reducing sediment supplies will set the stage for increasing water depths, a change exacerbated as the rates of rising sea levels increase.

Those changes might set the stage for "a scary metastable state," Murray said. Under that state, "conditions would tend to revert to an open-water subtidal basin that becomes too deep for the plants to come back," he said.

"We think that could be why marshes in the Chesapeake Bay region as well as in Louisiana are tending to deteriorate," he said. "That's because those are both places with relatively high sea-level rise rates, and because of land-use changes that decrease rates of sediment delivery downstream."

Such land-use changes could include the damming of rivers and the reforestation of formerly open land.

In fact, the study suggests that heavy sediment runoff during the extensive deforestation of America's colonial period may have created the conditions that built up today's extensive -- but now possibly "metastable" -- marshlands along the East Coast.

Related Links
Duke University
Learn about Climate Science at TerraDaily.com
Climate Science News - Modeling, Mitigation Adaptation



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Republicans Move To Block Al Gore Live Earth Rock Concert
Washington (AFP) March 28, 2007
Republicans in Congress are trying to bar former vice president Al Gore's anti-global warming mega-concert from its planned venue on the steps of the US Capitol building.







  • All Of Russia Will Have Internet And Phone Access
  • Wildblue High-Speed Internet Via Satellite Triples Capacity With New Satellite
  • Publish, Perish Attitudes Make Profs Balk At Online Publication
  • World Getting Ready To Change The Light Bulb

  • ISRO To Launch Foreign Satellite As Primary Payload First Time
  • Arianespace Is Ready To Support The Mobile Satellite Services Industry's Future Development
  • Next Ariane 5 Takes Shape
  • Official Opening Of The Soyuz Launch Base Construction Site In French Guiana

  • NASA Seeks New Research Proposals
  • Germans Urged To Give Foreign Travel A Rest To Curb Global Warming
  • Raytheon Team Proposes Single International Standard In ADS-B Pursuit
  • NASA Signs Defense Department Agreement

  • Raytheon to Pursue US Air Force Network and Space Operations And Maintenance Contract
  • Boeing Helps US Air Force FAB-T Program Win Key Acquisition Award
  • Raytheon Completes Testing Of Navy Multiband Terminal Satellite Communications System
  • Northrop Grumman Adds Boeing To Its Integrated Air And Missile Defense Battle Command System Team

  • New KVH TracVision M5 And M7 Deliver Stronger Signals For Superior Onboard Satellite TV
  • New Metal Crystals Formed On A Cotton Assembly Line
  • Mobile Phones Can Soon Survive Being Dropped
  • New Horizons Gets A Memory Bitted Jammed

  • Northrop Grumman Appoints Catherine Kuenzel And Jill Kale IT Sector Vice Presidents
  • SMA Wins Space Adventures Account
  • Fifth Annual Space Career Fair Set For April 12
  • 30th Space Wing Welcomes New Commander

  • DMCii To Launch New Higher-Resolution Satellite Imaging Service
  • First Greenhouse Gas Animations Produced Using Envisat SCIAMACHY Data
  • Take A Closer Look At Our Planet At The Palais De La Decouverte In Paris
  • GeoEye Acquires Leading Aerial Imagery Provider From GE Oil And Gas

  • Glonass System To Be Launched By Year-End
  • Haicom Is Proudly Announce The New HI-601VT GPS GSM Real-Time Tracker
  • Comtech To Supply Movement Tracking Systems To US Army
  • Russia Allocates $380 Million For Glonass In 2007

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement