Space Industry and Business News  
SOLAR DAILY
Harvesting the sun's energy for clean drinking water
by Staff Writers
Tokyo, Japan (SPX) Dec 11, 2020

illustration only

Without drinkable water there is no life. Yet, nearly 1.1 billion people worldwide lack access to fresh water and another 2.4 billion suffer from diseases borne by unclean drinking water. This is because while science has yielded advanced water treatment methods such as membrane distillation and reverse osmosis, these are often difficult to implement in developing countries owing to their high cost and low productivity.

A more nascent technology shows promise as an alternative for such regions of the world: direct solar steam generation (DSSG). DSSG involves harvesting the heat from the sun to convert water into vapor, thereby desalinating it or ridding it of other soluble impurities. The vapor is then cooled and collected as clean water for use.

This is a simple technology, but a key step, evaporation, is presenting roadblocks for its commercialization. With existing technology, evaporation performance has hit the theoretical limit. However, this is not sufficient for practical implementation. Measures to improve device design to minimize solar heat loss before it reaches bulk water, recycle latent heat in the water, absorb and utilize energy from the surroundings as well, and so on, have been taken to improve the evaporation performance beyond the theoretical limit and make this technology viable.

In a new paper published in Solar Energy Materials and Solar Cells, Professor Lei Miao from Shibaura Institute of Technology, Japan, along with colleagues Xiaojiang Mu, Yufei Gu, and Jianhua Zhou from Guilin University of Electronic Technology, China, review strategies formulated in the last two years to surpass this theoretical limit. "Our aim is to summarize the story of the development of new evaporation strategies, point out current deficiencies and challenges, and lay out future research directions to hasten the practical application of the DSSG purification technology", says Prof. Miao.

A pioneering strategy with which this evolutionary saga begins is the volumetric system, which, in lieu of bulk heating, uses a suspension of noble metals or carbon nanoparticles to absorb the sun's energy, transfer heat to the water surrounding these particles, and generate steam. While this increases the absorbed energy of the system, there is much heat loss.

To address this issue, the "direct contact type" system was developed, in which a double-layer structure with pores of different sizes covers the bulk water. The top layer with larger pores serves as a heat absorber and vapor escape route and the bottom layer with smaller pores is used to transport water up from the bulk to the top layer. In this system, the contact between the heated top layer and the water is concentrated, and heat loss is reduced to about 15%.

The "2D water path" or "indirect contact type" system came next, which further lowered heat loss by avoiding contact between the solar energy absorber and bulk water. This paved the way for the eventual development of the "1D water path" system, which is inspired by the natural capillary-action-based water transport process in plants. This system displays an impressive evaporation rate of 4.11 kg m-2h-1, nearly thrice the theoretical limit, along with a heat loss of only 7%.

This was followed by the injection-control technique in which the controlled sprinkling of water as rain on the solar energy absorber allows its absorption in a manner mimicking that in soil. This results in an evaporation rate of 2.4 kg m-2h-1 with a conversion efficiency of 99% from solar energy to water vapor.

Parallelly, strategies to gain additional energy from the environment or from the bulk water itself, and recover the latent heat from high-temperature steam, have been under development to improve the evaporation rate. Techniques to reduce the energy required for evaporation in the first place are also being developed, such as hydratable and light-absorbing aerogels, polyurethane sponge with carbon black nanoparticles, and carbon dot (CD) coated wood to hold the sun's energy and the water to be evaporated.

Several other such design strategies exist and several more are to come. Many pertinent issues--like the collection of the condensed water, durability of the materials, and stability during outdoor applications under fluctuating wind and weather conditions, remain to be addressed.

Yet the pace at which work on this technology is progressing makes it one to look forward to. "The path to the practical implementation of DSSG is riddled with problems," says Prof. Miao. "But given its advantages, there is a chance that it will be one of the frontrunning solutions to our growing drinking water scarcity problem."

Research Report: Strategies for breaking theoretical evaporation limitation in direct solar steam generation


Related Links
Shibaura Institute Of Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Outdoor solar testing maybe the IoT for Photovoltaics
Tempe AZ (SPX) Dec 09, 2020
A new system for measuring solar performance over the long term in scalable photovoltaic systems, developed by Arizona State University researchers, represents a breakthrough in the cost and longevity of interconnected power delivery. When solar cells are developed, they are "current-voltage" tested in the lab before they are deployed in panels and systems outdoors. Once installed outdoors, they aren't usually tested again unless the system undergoes major issues. The new test system, Suns-Voc, me ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
One ring to bind them all

Microchip offer Low-Power Radiation-Tolerant PolarFire FPGA ahead of spaceflight qualification

RUDN University professor suggested how to clean up space debris

Raytheon awarded $235.6M for production of Silent Knight Radar

SOLAR DAILY
Northrop Grumman Joint Threat Emitter deployed in support of UK-Led Joint Warrior Exercise

Elbit Systems launches E-LynX-Sat - a portable tactical SATCOM system

NXTCOMM Defense Division formed to support military communications imperative

Launch of next 3 Russian Gonets-M satellites scheduled on Nov 24

SOLAR DAILY
SOLAR DAILY
BeiDou navigation base in south China targets services in ASEAN

GMV wins major contracts for Galileo Second Generation ground segment

BDS-3 gains major breakthrough in civil aviation sector

Swift Navigation's improves accuracy of single-frequency GNSS receivers

SOLAR DAILY
Balloon firm plans test to later take tourists to edge of space

Beating the heat: Oxidation in novel coating material for aircraft gas turbine engines

Aviation legend Chuck Yeager dies age 97

U.S. B-52, joined by NATO fighter planes, completes Barents Sea exercise

SOLAR DAILY
Computer developed in China achieves 'quantum supremacy'

DARPA looks to light up integrated photonics with chip-scale laser development

Discovery suggests new promise for nonsilicon computer transistors

Magnetic vortices come full circle

SOLAR DAILY
Teledyne e2v wins UK grant to develop AI processes for intelligent EO detection systems

Monitoring European air traffic with Earth observation

Copernicus satellites keep eyes on icebergs for Vendee Globe

Rocket Lab to launch dedicated mission for Japanese earth imaging company Synspective

SOLAR DAILY
Trash tracking satellites help Indonesia tackle marine waste

Toxic tire additive blamed for massive coho salmon die-offs

Viral trash: French Covid clean-up nets mounds of masks

China to end all waste imports on Jan 1









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.