Space Industry and Business News  
STELLAR CHEMISTRY
Harnessing the power of AI to understand warm dense matter
by Staff Writers
Dresden, Germany (SPX) Jan 29, 2021

Atomic structure and electron distribution in warm dense matter.

The study of warm dense matter helps us understand what is going on inside giant planets, brown dwarfs, and neutron stars. However, this state of matter, which exhibits properties of both solids and plasmas, does not occur naturally on Earth. It can be produced artificially in the lab using large X-ray experiments, albeit only at a small scale and for short periods of time.

Theoretical and numerical models are essential to evaluate these experiments, which are impossible to interpret without formulas, algorithms, and simulations. Scientists at the Center for Advanced Systems Understanding (CASUS) at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have now developed a method to evaluate such experiments more effectively and faster than before.

Describing the exotic state of warm dense matter poses an extraordinary challenge to researchers. For one, common models of plasma physics cannot handle the high densities that are prevalent in this state. And for another, even models for condensed matter are no longer effective under the immense energies it entails.

A team around Dr. Tobias Dornheim, Dr. Attila Cangi, Kushal Ramakrishna, and Maximilian Bohme from CASUS in Gorlitz are working on modeling such complex systems. Initial results were recently published in the journal Physical Review Letters. The team joined forces with Dr. Jan Vorberger from the Institute of Radiation Physics at HZDR and Prof. Shigenori Tanaka from Kobe University in Japan to develop a new method to calculate the properties of warm dense matter more efficiently and faster.

"With our algorithm, we can perform highly accurate calculations of the local field correction, which describes the interaction of electrons in warm dense matter and thus allows us to unlock its properties. We can use this calculation to model and interpret results in future X-ray scattering experiments, but also as a basis for other simulation methods. Our method helps determine the properties of warm dense matter, such as temperature and density, but also its conductivity for electric current or heat and many other characteristics," Dornheim explains.

Mainframe computers and neural networks
"The motivation behind our method is that we and many other researchers would like to know exactly how electrons behave under the influence of small perturbations, such as the effect of an X-ray beam. We can derive a formula for this, but it is too complex to be solved with pencil and paper. This is why we previously resorted to a certain simplification, which, however, failed to show some important physical effects. We have now introduced a correction that removes this very flaw," Dornheim continues.

To implement it, they conducted computationally intense simulations over millions of processor hours on mainframe computers. Based on this data and with the help of analytical statistical methods, the scientists trained a neural network to numerically predict the interaction of electrons.

The efficiency gains provided by the new tool depend on the particular application. "In general, though, we can say that previous methods required thousands of processor hours to attain a high degree of accuracy, whereas our method takes mere seconds," says Attila Cangi, who joined CASUS from Sandia National Laboratories in the United States. "So now we can perform the simulation on a laptop whereas we used to need a supercomputer."

Outlook: A new standard code for experiment evaluation
For the time being, the new code can only be used for electrons in metals, for example in experiments on aluminum. However, the researchers are already working on a code that can be applied more generally and that should deliver results for a wide variety of materials under very different conditions in the future.

"We want to incorporate our findings into a new code, which will be open source, unlike the current code, which is licensed and therefore difficult to adapt to new theoretical insights," explains Maximilian Bohme, a doctoral student with CASUS who is collaborating on this with British plasma physicist Dave Chapman.

Such X-ray experiments to study warm dense matter are only possible at a handful of large laboratories, including the European XFEL near Hamburg, Germany, but also the Linear Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC) at Stanford University, the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the Z Machine at Sandia National Laboratories, and the SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan.

"We are in contact with these labs and expect to be able to be actively involved in the modeling of the experiments," Tobias Dornheim reveals. The first experiments at the Helmholtz International Beamline for Extreme Fields (HIBEF) at the European XFEL are already being prepared.

Research Report: Effective static approximation: A fast and reliable tool for warm-dense matter theory


Related Links
Helmholtz-Zentrum Dresden-Rossendorf
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
New galaxy sheds light on how stars form
Bath UK (SPX) Jan 26, 2021
A lot is known about galaxies. We know, for instance, that the stars within them are shaped from a blend of old star dust and molecules suspended in gas. What remains a mystery, however, is the process that leads to these simple elements being pulled together to form a new star. But now an international team of scientists, including astrophysicists from the University of Bath in the UK and the National Astronomical Observatory (OAN) in Madrid, Spain have taken a significant step towards understand ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
3D printing to pave the way for Moon colonization

NASA's Deep Space Network welcomes a new dish to the family

D-Orbit's ION satellite carrier rides SpaceX's Falcon 9 to orbit

European team to collaborate in optical communication

STELLAR CHEMISTRY
Northrop Grumman gets $3.6B for work on Air Force communications node

Skynet 6A passes Preliminary Design Review

Northrop Grumman lands $325M deal for Air Force JSTARS sustainment

ThinKom completes Over-the-Air tests with K/Q-Band antenna on protected comms satellite

STELLAR CHEMISTRY
STELLAR CHEMISTRY
European Commission awards launch contracts for next generation of Galileo satellites

NASA advancing global navigation satellite system capabilities

China releases 4 new BDS technical standards

China sees booming satellite navigation, positioning industry

STELLAR CHEMISTRY
Air Force starts Red Flag 21-1 exercise in southern Nevada

Marine Corps dedicates inaugural F-35 simulator at Air Station Miramar

US B-52 overflies Mideast as Biden sets policy tone

Air Force finishes structural upgrades to 247 F-22s

STELLAR CHEMISTRY
Embattled Intel says earnings better than expected

Transforming quantum computing's promise into practice

ASML earnings up despite pandemic

The changing paradigm of next-generation semiconductor memory development

STELLAR CHEMISTRY
LiveEO performs satellite-based vegetation risk analysis of entire US power grid

An airborne stratospheric observatory measures concentration of atomic oxygen directly

Satellite data reveals bonds between emissions, pollution and economy

China collects 100PB of Earth observation data

STELLAR CHEMISTRY
UK supermarkets caught in plastic packaging: study

Air pollution linked to irreversible sight loss: study

French court hears Agent Orange case against chemical firms

Combined river flows could send up to 3 billion microplastics a day into the Bay of Bengal









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.