Space Industry and Business News  
CHIP TECH
Harnessing hopping hydrogens for high-efficiency OLEDs
by Staff Writers
Fukuoka, Japan (SPX) Jul 14, 2017


Excited-state intramolecular proton transfer (ESIPT) makes possible organic light-emitting diodes (OLEDs) that are highly efficient by creating the necessary conditions to enable thermally activated delayed fluorescence (TADF). After excitation of the emitting molecule, a hydrogen atom - technically, just its nucleus - is transferred to a different atom in the same molecule through a process called ESIPT. The reconfigured molecule can then undergo TADF to convert a high fraction of the excitations into light. Following emission, the molecule returns to its original state. This mechanism increases the molecular design strategies available for the creation of novel and improved light-emitting materials. Credit William J. Potscavage, Jr.

Renewed investigation of a molecule that was originally synthesized with the goal of creating a unique light-absorbing pigment has led to the establishment of a novel design strategy for efficient light-emitting molecules with applications in next-generation displays and lighting.

Researchers at Kyushu University's Center for Organic Photonics and Electronics Research (OPERA) demonstrated that a molecule that slightly changes its chemical structure before and after emission can achieve a high efficiency in organic light-emitting diodes (OLEDs).

In addition to producing vibrant colors, OLEDs can be fabricated into everything from tiny pixels to large and flexible panels, making them extremely attractive for displays and lighting.

In an OLED, electrical charges injected into thin films of organic molecules come together to form packets of energy - called excitons - that can produce light emission.

The goal is to convert all of the excitons to light, but three-fourths of the created excitons are triplets, which do not produce light in conventional materials, while the remaining one-fourth are singlets, which emit through a process called fluorescence.

Inclusion of a rare metal, such as iridium or platinum, in a molecule can enable rapid emission from the triplets through phosphorescence, which is currently the dominant technology for highly efficient OLEDs.

An alternative mechanism is the use of heat in the environment to give triplets an energetic boost that is sufficient to convert them into light-emitting singlets.

This process, known as thermally activated delayed fluorescence (TADF), easily occurs at room temperature in appropriately designed molecules and has the added advantage of avoiding the cost and reduced molecular design freedom associated with rare metals.

However, most TADF molecules still rely on the same basic design approach.

"Many new TADF molecules are being reported each month, but we keep seeing the same underlying design with electron-donating groups connected to electron-accepting groups," says Masashi Mamada, lead researcher on the study reporting the new results.

"Finding fundamentally different molecular designs that also exhibit efficient TADF is a key to unlocking new properties, and in this case, we found one by looking at the past with a new perspective."

Currently, combinations of donating and accepting units are primarily used because they provide a relatively simple way to push around the electrons in a molecule and obtain the conditions needed for TADF.

Although the method is effective and a huge variety of combinations is possible, new strategies are still desired in the quest to find perfect or unique emitters.

The mechanism explored by the researchers this time involves the reversible transfer of a hydrogen atom - technically, just its positive nucleus - from one atom in the emitting molecule to another in the same molecule to create an arrangement conducive to TADF.

This transfer occurs spontaneously when the molecule is excited with optical or electrical energy and is known as excited-state intramolecular proton transfer (ESIPT).

This ESIPT process is so important in the investigated molecules that quantum chemical calculations by the researchers indicate that TADF is not possible before transfer of the hydrogen.

After excitation, the hydrogen rapidly transfers to a different atom in the molecule, leading to a molecular structure capable of TADF.

The hydrogen transfers back to its initial atom after the molecule emits light, and the molecule is then ready to repeat the process.

Although TADF from an ESIPT molecule has been reported previously, this is the first demonstration of highly efficient TADF observed inside and outside of a device.

This vastly different design strategy opens the door for achieving TADF with a variety of new chemical structures that would not have been considered based on previous strategies.

Interestingly, the molecule the researchers used was most likely a disappointment when first synthesized nearly 20 years ago by chemists hoping to create a new pigment only to discover that the molecule is colorless.

"Organic molecules never cease to amaze me," says Professor Chihaya Adachi, Director of OPERA. "Many paths with different advantages and disadvantages exist for achieving the same goal, and we have still only scratched the surface of what is possible."

The advantages of this design strategy are just beginning to be explored, but one particularly promising area is related to stability.

Molecules similar to the investigated one are known to be highly resistant to degradation, so researchers hope that these kinds of molecules might help to improve the lifetime of OLEDs.

To see if this is the case, tests are now underway.

While only time will tell how far this particular strategy will go, the continually growing options for OLED emitters certainly bode well for their future.

Research Report: "Highly efficient thermally activated delayed fluorescence from an excited-state intramolecular proton transfer system,"

CHIP TECH
Molecular electronics scientists shatter 'impossible' record
Orlando FL (SPX) Jul 07, 2017
An international research team that includes University of Central Florida Professor Enrique del Barco, Damien Thompson of the University of Limerick and Christian A. Nijhuis of the National University of Singapore has cracked an important limitation that for nearly 20 years has prevented the practical use of molecular diodes. Electrical circuits are the basic building blocks of modern ele ... read more

Related Links
Kyushu University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Breakthrough tool predicts properties of theoretical materials

Semiliquid chains pulled out of a sea of microparticles

A plastic planet

Strengthening 3-D printed parts for real-world use

CHIP TECH
First UAVs, Now Ships - Connectivity for the next generation of remote naval operations

Northrop Grumman receives Australian satellite ground station contract

DISA extends Comtech satellite services to Marines

Harris Corp. awarded Special Forces radio contract

CHIP TECH
CHIP TECH
India Plans to Roll Out National GPS Next Year

Orbital Alliance Techsystems receives contract for GPS artillery

Europe's Galileo satnav identifies problems behind failing clocks

New orbiters for Europe's Galileo satnav system

CHIP TECH
Rising temperatures spell plane take-off woes: study

Flying cars and no more pilots in flight revolution: Airbus

Global warming may limit airplane takeoffs in coming decades

Singapore developing space-based VHF communications for air traffic management

CHIP TECH
Manipulating electron spins without loss of information

Breakthrough in spintronics

Harnessing hopping hydrogens for high-efficiency OLEDs

Researchers develop dynamic templates critical to printable electronics technology

CHIP TECH
Quantum mechanics inside Earth's core

SSL To Provide Next-Generation Imaging Satellite Constellation To Digitalglobe

Computer vision techniques shed light on urban change

Extreme low-oxygen eddies in the Atlantic produce greenhouse gases

CHIP TECH
200 green activists killed in 2016, record toll: watchdog

Study finds toxic mercury is accumulating in the Arctic tundra

Human activities worsen air quality in Dunhuang, a desert basin in China

Herbicide boost for tadpoles: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.