Space Industry and Business News  
STELLAR CHEMISTRY
Growing pains in a cluster of protostars
by Staff Writers
New Haven CT (SPX) Nov 05, 2015


Astronomers using ALMA have imaged the episodic outflow of a young protostar known as CARMA-7. The twin jets -- each nearly 1.5 trillion kilometers long -- have distinct gaps, revealing that the star is growing by fits and starts. Image courtesy B. Saxton (NRAO/AUI/NSF); A. Plunkett et al.; ALMA (NRAO/ESO/NAOJ). For a larger version of this image please go here.

A Yale-led study has found a cluster of young stars that develop in distinct, episodic spurts. It is the first time astronomers have seen such a growth pattern within a star cluster - a chaotic, turbulent environment that is common for star formation. Previous observations have focused on stars forming in more isolated regions of space.

In a study published this week in the journal Nature, astronomers described the cosmic convulsions within Serpens South, a star cluster 1,400 light years from Earth. The researchers focused in particular on a protostar called CARMA-7.

The researchers recorded 22 "episodes" in which CARMA-7 experienced the gravitational push-pull that characterizes star formation. As protostars ingest raw material, they have counter-balancing emissions of material they don't need. Such "outflow" is important to researchers because it can be measured more easily, unlike the hard-to-detect incoming matter.

"Outflows are very common in astrophysics," said co-author Hector Arce, an astronomy professor at Yale whose research group focuses on outflow dynamics. "They are good indicators of protostars, evolved stars, and even supermassive black holes. They tell us that there is a central, massive object in the outflow origin, with a surrounding accretion disc."

The first author of the paper is Adele Plunkett, a recent Yale graduate student now working with the European Southern Observatory (ESO) in Santiago, Chile. Plunkett and her colleagues used data from the Atacama Large Millimeter/sub-millimeter Array (ALMA) in Chile to conduct the research.

"This is the beginning of being able to understand cluster regions," Plunkett said. "In the past, we only saw cumulative outflows. To be able to observe individual outflows, with distinct ejection events, was exciting - and something we could only do with ALMA."

Plunkett said the technology allows researchers to determine details about the star formation process, such as how often material is accreted or ejected, on time scales of a few hundred years. Further observation promises an even greater level of detail about protostars in their most common environment, said the researchers.

"This result shows that when young stars grow they do so episodically, in little growth spurts, rather than steadily," said co-author Pieter van Dokkum, the Sol Goldman Professor of Astronomy and chair of Yale's Department of Astronomy. "They've learned to chew their food before they swallow."

The other co-authors of the paper are Diego Mardones of the Universidad de Chile, Michael Dunham of the Harvard-Smithsonian Center for Astrophysics, Manuel Fernandez-Lopez of Instituto Argentino de Radioastronomia, and Jose Gallardo and Stuartt Corder of the Joint ALMA Observatory.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Yale University
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
One size fits all when it comes to unravelling how stars form
Leeds UK (SPX) Nov 02, 2015
Observations led by astronomers at the University of Leeds have shown for the first time that a massive star, 25 times the mass of the Sun, is forming in a similar way to low-mass stars. The discovery, made using a new state-of-the-art telescope called the Atacama Large Millimeter/submillimeter Array (ALMA), which is based in Chile, South America, is published online by The Astrophysical J ... read more


STELLAR CHEMISTRY
From good to bad with a copper switch

Diamonds may not be so rare as once thought

Researchers have the chemistry to make a star

NUS scientists developed super sensitive magnetic sensor

STELLAR CHEMISTRY
Raytheon producing FAB-T terminals for Air Force

Harris mesh reflectors deployed on 4th MOUS Bird

Airbus intros military satellite communications service

Airbus Defence and Space launches XEBRA

STELLAR CHEMISTRY
Russian Space Agency signs contracts for 31 commercial launches in 2015

Russia to refurbish satan missiles as cheaper launchers

Full-Scale Drills at Russia's Vostochny Cosmodrome to Start in Two Weeks

Developing Commercial Spaceports in the USA

STELLAR CHEMISTRY
Galileo pair preparing for December launch

GPS IIF satellite successfully launched from Cape Canaveral

U.S. Air Force prepares to launch next GPS IIF satellite

Russia to Open Four New Glonass Stations Abroad

STELLAR CHEMISTRY
Chairman of China's biggest airline 'investigated'

'Unusual' fog disrupts flights across Europe

Sikorsky moves forward with presidential helicopter replacement

Australia receives eighth Boeing C-17A

STELLAR CHEMISTRY
Silicon Valley granddaddy HP readies breakup

Techniques to cool 3D integrated circuits stacked like a skyscraper

Manipulating wrinkles could lead to graphene semiconductors

Photons open the gateway for quantum networks

STELLAR CHEMISTRY
Curtiss-Wright and Harris bring digital map solutions to rugged systems

OGC and ASPRS to collaborate on geospatial standards

Study predicts bedrock weathering based on topography

How TIMED Flies: Unexpected Trends in Carbon Data

STELLAR CHEMISTRY
India's choked capital fails to collect new 'pollution toll'

India's choked capital starts 'pollution toll' for trucks

Gear, not geoducks, impacts ecosystem if farming increases

Plastic litter taints the sea surface, even in the Arctic









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.