Space Industry and Business News  
OIL AND GAS
Greening hydrocarbon separation and crude oil refining
by Staff Writers
Thuwal, Saudi Arabia (SPX) Sep 01, 2022

An organic polymer membrane developed my KAUST scientists offers a greener and more sustainable way to separate hydrocarbon mixtures.

Polymer-based membranes developed at KAUST could enable greener and cheaper industrial separation approaches. Their stability and selectivity can be tuned by thermal crosslinking to separate simple hydrocarbon mixtures and complex crude oil fractions.

Separation processes, such as distillation and evaporation, are central to the chemical, pharmaceutical and petrochemical industries, but they are also energy intensive, expensive and polluting. Each year, crude oil refineries consume about one percent of the total energy used worldwide, and some refineries can even release up to 20 to 35 million tonnes of carbon dioxide (CO2) into the atmosphere.

"Decreasing greenhouse gas emissions is a step forward in addressing climate change," says lead author Stefan Chisca, a research scientist at KAUST. Membranes, with their low carbon footprint and ability to fit in small spaces, offer an attractive alternative to these heat-based processes and can reduce the CO2 emissions of crude oil refineries.

Polymer membranes are cheaper and easier to manufacture and adapt to large-scale processes than inorganic membranes. Yet, their low stability under harsh industrial conditions, such as elevated temperature and certain solvents, affects their performance.

The researchers chose the polymer polytriazole - bearing hydroxyl functional groups as a stable backbone - for their membrane. They deposited the polymer dissolved in various solvents onto a glass plate and immersed the support in distilled water to remove the resulting film. Next, they heated the film in a furnace to crosslink the hydroxyl groups and generate a membrane stable in organic solvents as well as in highly acidic and basic media.

Crosslinking is necessary for challenging applications and must provide stability in the broadest range of conditions, explains team leader Suzana Nunes. "The key to obtaining membranes that could resist harsh environments like crude oil is the presence of the hydroxyl groups," she says.

The membranes enriched hydrocarbon mixtures by up to 95 percent in compounds containing less than ten carbons. They showed higher selectivity toward paraffins over aromatics, allowing the researchers to target different crude oil mixtures.

"Another crucial factor for the success of these membranes is their asymmetric porous morphology," Nunes says. The top surface of the membranes presented an ultrathin dense layer consolidated by crosslinking, providing size selectivity. The underlying layers showed a highly porous structure with open interconnected pores that gradually increased with increasing depth to enable permeation.

Chisca explains that the team is now scaling up the membranes and manufacturing test modules for pilot plants. Incorporating a polytriazole membrane unit into existing refineries can improve these processes by producing higher purity components or removing byproducts while reducing energy consumption.

Research Report:Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation


Related Links
King Abdullah University of Science and Technology (KAUST)
All About Oil and Gas News at OilGasDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


OIL AND GAS
S.African court confirms Shell seismic exploration ban
Johannesburg (AFP) Sept 1, 2022
A South African court on Thursday upheld a ban imposed on energy giant Shell from using seismic waves to explore for oil and gas off the Indian Ocean coast. The judgement was a major victory for environmentalists who had argued the technique would affect whales and other marine life. In a ruling seen by AFP, the high court in the southern city of Makhanda said authorisation granted in 2014 to search for oil and gas in the Transkei and Algoa areas "is reviewed and set aside." Last December th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OIL AND GAS
AI spurs scientists to advance materials research

Google's immersive Street View could be glimpse of metaverse

Space Station experiment to probe origins of elements

Selfridges targets 'circular' sales for almost half its goods

OIL AND GAS
ATLAS Space Operations secures $26M in Series B funding led by Mitsui

US Navy military sealift command awards Inmarsat 10-year wideband follow-on contract

Compact QKD system paves the way to cost-effective satellite-based quantum networks

Satellite operators Eutelsat, OneWeb agree to merge

OIL AND GAS
OIL AND GAS
MariaDB reimagines how databases deliver geospatial capabilities with acquisition

Space Systems Command awards GPS support contract to Lockheed Martin

Safran acquires Orolia and plans to become the world leader in resilient PNT

The face of Galileo

OIL AND GAS
US Army grounds workhorse Chinook helicopter

NASA to fly six scientific balloons from New Mexico

US to donate 8 helicopters to Czech Republic

Northrop Grumman continues B-2 Spirit modernization program

OIL AND GAS
Semiconductor giant Micron to invest $15 bn in Idaho

A quantum pump without the crank

MIT team reports giant response of semiconductors to light

Electron and nuclear spin qubits 2D array opens new frontier in quantum science

OIL AND GAS
Long March successfully deploys Beijing 3B satellite

Hungary sacks weather service chief over inaccurate forecasts

The Lacuna Space water monitoring system

Launch Schedule for 3rd StriX-1 SAR satellite

OIL AND GAS
UK minister defends plan to stop sewage spillover

Dead fish and depression on the banks of the Oder

Engineering enzymes to help solve the planet's plastic problem

Tracking marine plastic drift from space









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.