Space Industry and Business News  
CARBON WORLDS
Graphene assembled film shows higher thermal conductivity than graphite film
by Staff Writers
Gothenburg, Sweden (SPX) Jul 06, 2018

In the graphene film, phonons - quantum particles that describe thermal conductivity - can move faster in the graphene layers rather than interact between the layers, thereby leading to higher thermal conductivity.

Researchers at Chalmers University of Technology, Sweden, have developed a graphene assembled film that has over 60 percent higher thermal conductivity than graphite film - despite the fact that graphite simply consists of many layers of graphene. The graphene film shows great potential as a novel heat spreading material for form-factor driven electronics and other high power-driven systems.

Until now, scientists in the graphene research community have assumed that graphene assembled film cannot have higher thermal conductivity than graphite film. Single layer graphene has a thermal conductivity between 3500 and 5000 W/mK. If you put two graphene layers together, then it theoretically becomes graphite, as graphene is only one layer of graphite.

Today, graphite films, which are practically useful for heat dissipation and spreading in mobile phones and other power devices, have a thermal conductivity of up to 1950 W/mK. Therefore, the graphene-assembled film should not have higher thermal conductivity than this.

Research scientists at Chalmers University of Technology have recently changed this situation. They discovered that the thermal conductivity of graphene assembled film can reach up to 3200 W/mK, which is over 60 percent higher than the best graphite films.

Professor Johan Liu and his research team have done this through careful control of both grain size and the stacking orders of graphene layers. The high thermal conductivity is a result of large grain size, high flatness, and weak interlayer binding energy of the graphene layers. With these important features, phonons, whose movement and vibration determine the thermal performance, can move faster in the graphene layers rather than interact between the layers, thereby leading to higher thermal conductivity.

"This is indeed a great scientific break-through, and it can have a large impact on the transformation of the existing graphite film manufacturing industry", says Johan Liu.

Furthermore, the researchers discovered that the graphene film has almost three times higher mechanical tensile strength than graphite film, reaching 70 MPa.

"With the advantages of ultra-high thermal conductivity, and thin, flexible, and robust structures, the developed graphene film shows great potential as a novel heat spreading material for thermal management of form-factor driven electronics and other high power-driven systems", says Johan Liu.

As a consequence of never-ending miniaturisation and integration, the performance and reliability of modern electronic devices and many other high-power systems are greatly threatened by severe thermal dissipation issues.

"To address the problem, heat spreading materials must get better properties when it comes to thermal conductivity, thickness, flexibility and robustness, to match the complex and highly integrated nature of power systems", says Johan Liu. "Commercially available thermal conductivity materials, like copper, aluminum, and artificial graphite film, will no longer meet and satisfy these demands."

The IP of the high-quality manufacturing process for the graphene film belongs to SHT Smart High Tech AB, a spin-off company from Chalmers, which is going to focus on the commercialisation of the technology.

Research Report: "Tailoring the Thermal and Mechanical Properties of Graphene Film by Structural Engineering"


Related Links
Chalmers University of Technology
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
Physicists solve the mystery of vanishing particles in graphene
Moscow, Russia (SPX) Jun 20, 2018
Researchers from the Moscow Institute of Physics and Technology and Tohoku University (Japan) have explained the puzzling phenomenon of particle-antiparticle annihilation in graphene, recognized by specialists as Auger recombination. Although persistently observed in experiments, it was for a long time thought to be prohibited by the fundamental physical laws of energy and momentum conservation. The theoretical explanation of this process has until recently remained one of the greatest puzzles of solid- ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Sandia light mixer generates 11 colors simultaneously

Probing nobelium with laser light

Hope for new catalysts with high activity

Smarter, faster algorithm cuts number of steps to solve problems

CARBON WORLDS
New Land Mobile Technology Driving The Need For Modern Satcom Capabilities

On-the-move communications system set to field this fall

Lockheed Martin's 5th AEHF comsat completes launch environment test

IAP Worldwide Services tapped for satellite systems

CARBON WORLDS
CARBON WORLDS
Russia launches Soyuz-21b with Glonass-M navigation satellite

China's Beidou system helps livestock water supply in remote pastoral areas

UK says shut out of EU's Galileo sat-nav contracts

Woman drowns in Prague drains playing GPS treasure hunt

CARBON WORLDS
Lockheed to support, train Iraqi air force on C-130J aircraft

Boeing to build 4 new Chinooks for U.S. Special Operations

Australia shelves MH370 memorial after relatives protest

Cherokee Nation Aerospace contracted for F-16 upgrades

CARBON WORLDS
Ultimate precision for sensor technology using qubits and machine learning

This is what a stretchy circuit looks like

Silicon provides means to control quantum bits for faster algorithms

Rare element to provide better material for high-speed electronics

CARBON WORLDS
Climate change is making night-shining clouds more visible

Keeping Delhi cool, one ice block at a time

Scientists offer solution to Gaia hypothesis

ECOSTRESS Launches to Space Station on SpaceX Mission

CARBON WORLDS
Seattle bans plastic straws, but US still has a long way to go

Air pollution plays significant role in diabetes: study

Last straw for McDonald's, Burger King in Mumbai plastic ban

Romania asks UNESCO to delay decision on gold mining region









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.