![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Leicester UK (SPX) Feb 02, 2022
Leicester research has identified a new 'Goldilocks Zone' in the Earth's crust which could provide metals vital to the green revolution. The energy future of humankind depends on the continued supply of key metals like gold, copper and tellurium that are essential in the manufacturing of green technology, such as battery storage devices, solar panels and wind turbines. Now, a new international study led by researchers from the Centre for Sustainable Resource Extraction at the University of Leicester, published in Nature Communications, and funded by the Natural Environment Research Council (NERC), has discovered the presence of a temperature dependent 'valve' located at the base of the Earth's crust, which intermittently allows these important metals to pass upwards to shallower levels. Critical metals required to enhance the green energy revolution are largely stored in the mantle of our planet, at depths in excess of multiple tens of kilometres that are inaccessible to direct extraction. Fortunately, every now and then, nature does most of the hard work for us. Magmas sourced from within the Earth's mantle rise up into the crust and have the potential to carry, and then concentrate and deposit, large volumes of metals. Dr David Holwell is an Associate Professor in Applied and Environmental Geology and lead author for the study. He said: "When magmas reach the base of the crust, the conditions there act like a 'Goldilocks Zone' for these metals. If the temperature is either too hot or too cold, these 'valves' remain shut and metals cannot pass through, but we have found that in many cases, it may be 'just right' at around 1,000 C, where metals like copper, gold and tellurium can be released." This finding sheds light on the planetary cycle of metals and how some of the world's largest resources of copper are formed. The work is part of the NERC-funded FAMOS project (From Arc Magmas to Ores), and involved collaborators from Cardiff University, the University of Western Australia and the mining company BHP. Professor Jamie Wilkinson, of the Natural History Museum, London, is Principal Investigator for the FAMOS project, and added: "This paper represents a fantastic piece of work from the project team that sheds new light on magmatic processes that operate deep in the Earth's crust but which have major implications for the accessibility of critical metals for humankind. The results will enable more targeted mineral exploration, thus lowering the environmental footprint associated with the discovery and extraction of green metals."
Research Report: "Mobilisation of deep crustal sulfide melts as a first order control on upper lithospheric metallogeny"
![]() ![]() Physicist solves century old problem of radiation reaction Lancaster UK (SPX) Jan 26, 2022 A Lancaster physicist has proposed a radical solution to the question of how a charged particle, such as an electron, responded to its own electromagnetic field. This question has challenged physicists for over 100 years but mathematical physicist Dr Jonathan Gratus has suggested an alternative approach - published in the Journal of Physics A- with controversial implications. It is well established that if a point charge accelerates it produces electromagnetic radiation. This radiation has b ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |