Space Industry and Business News  
TECTONICS
Geologists discover how Australia's highest mountain was created
by Staff Writers
Sydney, Australia (SPX) Mar 18, 2016


Topography of Eastern Australia is shown. Image courtesy Professor Dietmar Muller. For a larger version of this image please go here.

Geologists from the University of Sydney and the California Institute of Technology have solved the mystery of how Australia's highest mountain - Mount Kosciuszko - and surrounding Alps came to exist.

Most of the world's mountain belts are the result of two continents colliding (e.g. the Himalayas) or volcanism. The mountains of Australia's Eastern highlands - stretching from north-eastern Queensland to western Victoria - are an exception. Until now no one knew how they formed.

A research team spearheaded by Professor Dietmar Muller from the University's School of Geosciences used high performance computing code to investigate the cause of the uplift which created the mountain range. The team found the answer in the mountains' unusually strong gravity field.

"The gravity field led us to suspect the region might be pushed up from below so we started looking at the underlying mantle: the layer of rock between the Earth's core and its crust," said Professor Muller.

The team found the mantle under Australia's east coast has been uplifted twice.

The first occurred during the Early Cretaceous Period, when Australia was part of Gondwanaland.

Over Earth's lifespan or 'geological time' the largely solid mantle has continuously been stirred by old, cold tectonic plate sections sinking into the deep mantle, under another plate. This process, called subduction, was occurring during the Early Cretaceous Period.

"Eastern Australia was drifting over a subducted plate graveyard, giving it a sinking feeling," said co-author Dr Kara Matthews, a former PhD candidate at the University now at the University of Oxford. "But around 100 million years ago subduction came to a halt, resulting in the entire region being uplifted, forming the Eastern Highlands."

The next 50 million years was a time of relative inactivity.

"Then, about 50 million years ago Australia's separation from Antarctica accelerated and it started moving north-northeast, gradually taking it closer to a vast mantle upwelling called the South Pacific Superswell," said co-author Dr Nicolas Flament. "This provided a second upward push to the Eastern Highlands as they gradually rode over the edge of the superswell."

Professor Muller said the two-phase uplift suggested by supercomputer models is supported by geological features from rivers in the Snow Mountains, where river incision occurred in two distinct phases.

"The model we built explains why the iconic Australian Alps exist and is also a new mechanism for figuring out how some other mountainous regions elsewhere in the world were formed."

The team's findings have been published in Earth and Planetary Sciences.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Sydney
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECTONICS
Faults control the amount of water into the Earth during continental breakup
Southampton, UK (SPX) Mar 08, 2016
New light has been shed on the processes by which ocean water enters the solid Earth during continental breakup. Research led by geoscientists at the University of Southampton, and published in Nature Geoscience this week, is the first to show a direct link on geological timescales between fault activity and the amount of water entering the Earth's mantle along faults. When water and carbo ... read more


TECTONICS
Virtual reality girds for test in marketplace

British mathematician solves Fermat's Last Theorem

Outsourcing crystal growth...to space

Unique optical trapping system offers way to launch high-power laser light

TECTONICS
In-orbit delivery of Laos' 1st satellite launched

Upgrade set for Britain's tactical communications system

Airbus continues operating German military satellites

BAE Systems supports Navy communications and electronics

TECTONICS
ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

Launch of Dragon Spacecraft to ISS Postponed Until April

ISRO launches PSLV C32, India's sixth navigation satellite

TECTONICS
ISRO Developing 'Front-End Chip' for Satellite Navigation System

India to Launch Sixth Navigational Satellite on Thursday

Lockheed Martin building next generation of military GPS satellites

Traffic app says not at fault for Israel troops losing way

TECTONICS
High G-force training system on way for fighter pilots

Lockheed Martin delivers KC-130J refuelers to Saudi Arabia

Second CH-53K helicopter enters testing program

Space keeps us safe as air travel rises

TECTONICS
Overlooked resistance may inflate estimates of organic-semicon performance

Quantum computer factors numbers, could be scaled up

Spinning better electronic devices

Artificial control of exciplexes opens possibilities for new electronics

TECTONICS
Satellites to help check unauthorised construction at monuments

Improving farm and water management with DMC constellation

Russia Prepared to Offer Launch Options for Morocco's Satellite

Jason-3 Begins Mapping Oceans, Sees Ongoing El Nino

TECTONICS
'Chemical Chernobyl': activists say toxic dump threatens St. Petersburg

Israel Bedouins trapped between a dump and red tape

Mexico City lifts air pollution alert

Pigeon patrol deployed to measure London air pollution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.