Space Industry and Business News  
EARLY EARTH
Genetic rewiring behind spectacular evolutionary explosion in East Africa
by Staff Writers
Norwich UK (SPX) Jan 20, 2021

illustration only

Genetic rewiring could have driven an evolutionary explosion in the shapes, sizes and adaptations of cichlid fish, in East Africa's answer to Darwin's Galapagos finches.

Published in BMC Genome Biology, an Earlham Institute (EI) study, with collaborators at the University of East Anglia (UEA) and Wisconsin Institute for Discovery, shows that 'genetic rewiring' at non-coding regions - rather than mutations to protein-coding regions of genes - may play an important role in how cichlid fish are able to rapidly adapt to fill a staggeringly wide range of environmental niches in the East African Rift lakes.

The results could help future studies to improve breeding of economically important cichlid species such as tilapia - a staple in aquaculture.

Darwin's famous finches are one of the most well-known examples of evolution by natural selection, and specifically adaptive radiation. The birds he observed on the Galapagos archipelago had differences in their beaks that could be matched to fit their specific feeding habits - whether they ate big or small seeds, insects, or even used tools to find food.

Amazingly, in the 2-3 million years it took 14 species of finch to evolve on the Galapagos Islands, around 1,000 species of cichlid evolved in Lake Malawi alone.

"In the Great Lakes of East Africa, and within the last few million years, a few ancestral lineages of cichlid fish have independently radiated and given rise to well over 2,000 species - and we're still finding new ones," says first author Dr Tarang Mehta, a postdoctoral scientist in EI's Haerty Group.

"They occupy a really large diversity of freshwater ecological niches in lakes, rivers and even swamps: this includes sandy substrates, mud, rocks, and vegetated bottoms. As a result, they are all adapted to different dietary habits and niches in these areas."

By looking at gene expression across different cichlid tissues in five representative species from East African rivers and the Great Rift Lakes, the team discovered an evolutionary rewiring of several important genes linked to the adaptability seen in cichlids. The effect which was particularly prominent in the vision of fish species.

"We found out that the most rewired genes are associated with the visual system," explains Dr Mehta. "Essentially, if you look at the different species of fish we used in the study, you could see major differences in the regulation network around opsin genes they use for vision depending on where they live and what they eat.

"For example, the Lake Malawi rock-dwelling species, M. zebra, feeds on UV-absorbing phytoplankton algae. That generally requires increased expression of a particular opsin, SWS1, which helps with sensitivity to UV light. That may well explain why it has a more complex regulatory network around SWS1 compared with the Lake Tanganyika benthivore, N. brichardi, which does not share the same diet or habitat."

Armed with some genes of interest, the team confirmed the mechanisms behind these gene regulatory differences in the lab. Looking at the fine scale, they identified small changes in the DNA sequence of regulatory regions at the start of genes important for trait differences between species, including the visual system.

Rather than the gene itself being modified, it was the regions of DNA known as binding sites that are targeted by transcription factors - the proteins which determine whether a gene is turned on or turned off. In this way, the different species of fish can be said to have had their visual system 'rewired' for different functions.

Taking this further, the team was able to show that these changes could be commonly associated throughout cichlid fish in Lake Malawi, with diet and ecology-dependent rewiring showing that changes in transcription factor binding could be key to fine-tuning visual sensitivity.

Depending on the trait, cichlids appear to utilise an array of genetic mechanisms to generate phenotypic novelty however, the 'tinkering' of regulatory systems appears more widespread in cichlid fish than previously discovered. This evolutionary plasticity could well explain the explosion of species in such a small area over a relatively short time.

"It's a proof of concept," says Dr Mehta. "As more data comes out, we'll be able to look at this in depth in representative clades from each of the different radiations, not just in Lake Malawi but also Lake Tanganyika, Lake Victoria and even in some of the cichlids in South America."

Professor Federica Di Palma, Professorial Fellow of Biodiversity at UEA, said: "We have released an impressive amount of expression data which will further aid studies into the adaptive radiation of cichlids for the future. We are now deciphering the complexity of these cis-regulatory regions by using genome-wide CRISPR screens.

"The wider impact of our regulatory gene network approach will also help inform evolution of agriculturally important traits for tilapia such as growth rate and tolerance to different local water conditions, as well as for general aquaculture and fisheries."

Research paper


Related Links
Earlham Institute
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
Scientists characterize a dinosaur cloaca, or vent, for the first time
Washington DC (UPI) Jan 19, 2021
For the first time, scientists have described the cloaca, or vent, of a dinosaur - the all-purpose opening used for reproduction and waste disposal. Many mammals have distinct openings for defecating, urinating and reproduction, but most vertebrates boast a single hole. The latest discovery, published Tuesday in the journal Current Biology, suggests dinosaurs were no different. Over the last decade, scientists have unearthed dinosaur fossils featuring feathers, as well as preserved skin ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Saffire Ignites New Discoveries in Space

Physicists propose a new theory to explain one dimensional quantum liquids formation

Seeing in a flash

EOS supports Texas Rocket Engineering Laboratory (TREL) to fuel additive manufacturing education

EARLY EARTH
Northrop Grumman lands $325M deal for Air Force JSTARS sustainment

ThinKom completes Over-the-Air tests with K/Q-Band antenna on protected comms satellite

Defense, Commerce departments join to find 5G solutions

France signs agreement to purchase Northrop Grumman's E-2D advanced Hawkeye

EARLY EARTH
EARLY EARTH
NASA advancing global navigation satellite system capabilities

China sees booming satellite navigation, positioning industry

Galileo satellites help rescue Vendee Globe yachtsman

BeiDou navigation base in south China targets services in ASEAN

EARLY EARTH
AFRL, AFLCMC Laboratory collaboration addresses pilot oxygen concerns

Air Force task force studies accountability throughout the command

Erdogan seeks solution with Biden over F-35 jets

Northrop Grumman to Enable New F-35 Warfighting Capability

EARLY EARTH
Transforming quantum computing's promise into practice

ASML earnings up despite pandemic

The changing paradigm of next-generation semiconductor memory development

Light-based processors boost machine-learning processing

EARLY EARTH
Satellite-powered app to spot loneliness in hotspots in UK cities

Earth Observation data could represent a billion-dollar opportunity for Africa

Genesis of blue lightning into the stratosphere detected from ISS

Counting elephants from space

EARLY EARTH
A sea of rubbish: ocean floor landfills

Reducing air pollution 'could prevent 50,000 EU deaths'

Eliminating microplastics in wastewater directly at the source

Mobility without particulates









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.