Space Industry and Business News  
STELLAR CHEMISTRY
Gemini South's high-def version of 'A Star is Born'
by Staff Writers
Houston TX (SPX) Oct 07, 2020

Two near-infrared composite images showing a 33 trillion-mile section of the Western Wall, a cloud of gas and dust in a star-forming region of the Carina Nebula. Each image was taken by Rice University astronomer Patrick Hartigan and colleagues from telescopes at the National Science Foundation's NOIRLab observatory in Chile and shows hydrogen molecules at the cloud's surface (red) and hydrogen atoms evaporating from the surface (green). The left-hand image was taken with the four-meter Blanco telescope's Wide-Field Infrared Imager in 2015. The right-hand image was taken with the 8.1-meter Gemini South telescope's wide-field adaptive optics imager in January 2018 and has about 10 times finer resolution thanks to a mirror that changes shape to correct for atmospheric distortion.

NASA's James Webb Space Telescope is still more than a year from launching, but the Gemini South telescope in Chile has provided astronomers a glimpse of what the orbiting observatory should deliver.

Using a wide-field adaptive optics camera that corrects for distortion from Earth's atmosphere, Rice University's Patrick Hartigan and Andrea Isella and Dublin City University's Turlough Downes used the 8.1-meter telescope to capture near-infrared images of the Carina Nebula with the same resolution that's expected of the Webb Telescope.

Hartigan, Isella and Downes describe their work in a study published online this week in Astrophysical Journal Letters. Their images, gathered over 10 hours in January 2018 at the international Gemini Observatory, a program of the National Science Foundation's NOIRLab, show part of a molecular cloud about 7,500 light years from Earth. All stars, including Earth's sun, are thought to form within molecular clouds.

"The results are stunning," Hartigan said. "We see a wealth of detail never observed before along the edge of the cloud, including a long series of parallel ridges that may be produced by a magnetic field, a remarkable almost perfectly smooth sine wave and fragments at the top that appear to be in the process of being sheared off the cloud by a strong wind."

The images show a cloud of dust and gas in the Carina Nebula known as the Western Wall. The cloud's surface is slowly evaporating in the intense glow of radiation from a nearby cluster of massive young stars. The radiation causes hydrogen to glow with near-infrared light, and specially designed filters allowed the astronomers to capture separate images of hydrogen at the cloud's surface and hydrogen that was evaporating.

An additional filter captured starlight reflected from dust, and combining the images allowed Hartigan, Isella and Downes to visualize how the cloud and cluster are interacting. Hartigan has previously observed the Western Wall with other NOIRLab telescopes and said it was a prime choice to follow up with Gemini's adaptive optics system.

"This region is probably the best example in the sky of an irradiated interface," he said. "The new images of it are so much sharper than anything we've previously seen. They provide the clearest view to date of how massive young stars affect their surroundings and influence star and planet formation."

Images of star-forming regions taken from Earth are usually blurred by turbulence in the atmosphere. Placing telescopes in orbit eliminates that problem. And one of the Hubble Space Telescope's most iconic photographs, 1995's "Pillars of Creation," captured the grandeur of dust columns in a star-forming region. But the beauty of the image belied Hubble's weakness for studying molecular clouds.

"Hubble operates at optical and ultraviolet wavelengths that are blocked by dust in star-forming regions like these," Hartigan said.

Because near-infrared light penetrates the outer layers of dust in molecular clouds, near-infrared cameras like the Gemini South Adaptive Optics Imager can see what lies beneath. Unlike traditional infrared cameras, Gemini South's imager uses "a mirror that changes its shape to correct for shimmering in our atmosphere," Hartigan said. The result: photos with roughly 10 times the resolution of images taken from ground-based telescopes that don't use adaptive optics.

But the atmosphere causes more than blur. Water vapor, carbon dioxide and other atmospheric gases absorb some parts of the near-infrared spectrum before it reaches the ground.

"Many near-infrared wavelengths will only be visible from a space telescope like the Webb," Hartigan said. "But for near-infrared wavelengths that reach Earth's surface, adaptive optics can produce images as sharp as those acquired from space."

The advantages of each technique bode well for the study of star formation, he said.

"Structures like the Western Wall are going to be rich hunting grounds for both Webb and ground-based telescopes with adaptive optics like Gemini South," Hartigan said. "Each will pierce the dust shrouds and reveal new information about the birth of stars."

Research paper


Related Links
Rice University
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
New technology is a 'science multiplier' for astronomy
Bloomington IN (SPX) Sep 22, 2020
Federal funding of new technology is crucial for astronomy, according to results of a study released Sept. 21 in the Journal of Astronomical Telescopes, Instruments and Systems. The study tracked the long-term impact of early seed funding obtained from the National Science Foundation. Many of the key advances in astronomy over the past three decades benefited directly or indirectly from this early seed funding. Over the past 30 years, the NSF Advanced Technologies and Instrumentation program ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
How intense and dangerous is cosmic radiation on the Moon

Ultrasensitive microwave detector developed

New study on the space durability of 3D-printed nanocomposites

AFRL repairs next generation composite materials with light

STELLAR CHEMISTRY
Isotropic Systems and SES GS to trail next-gen multi-beam antenna technologies for US forces

Swedish Space Corporation to cease assisting Chinese companies operate satellites

Creating cross-domain kill webs in real time

AEHF-6 protected communications satellite completes on-orbit testing

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Fourth GPS 3 Satellite Encapsulated Ahead of Launch

Government to explore new ways of delivering 'sat nav' for the UK

Tech combo is a real game-changer for farming

Launch of Russia's Glonass-K satellite postponed until October

STELLAR CHEMISTRY
State Department approves $14B sales of F-35s, F-18s to Switzerland

Lockheed, Pentagon agree on $70.6M settlement over F-35 parts problems

USS Ross runs air defense exercises with NATO F-16s

Singapore Airlines drops 'flights to nowhere' after outcry

STELLAR CHEMISTRY
China chip giant SMIC shares sink on US export controls

Scientists pave way for carbon-based computers

U.S., Britain partner on research into sensor information processing

SoftBank Group selling Arm to NVIDIA for up to $40 billion

STELLAR CHEMISTRY
China sends two environmental monitoring satellites into space

Satellite use AI to process EO imagery in-flight

Monitoring trucks and trade from space

Satellogic announces global consortium of geospatial imagery

STELLAR CHEMISTRY
Smart shopping can reduce exposure to chemicals called endocrine disruptors

Pay firefighting bill before leaving, Sri Lanka tells stricken oil tanker

Rio Tinto hit with human rights claims over Bougainville mine

Sri Lanka returns containers of illegal waste to Britain









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.