Space Industry and Business News  
CARBON WORLDS
Gas gives laser-induced graphene super properties
by Staff Writers
Houston TX (SPX) May 18, 2017


This is a custom chamber built by researchers at Rice University allowed them to refine their process for creating laser-induced graphene. Image courtesy Tour Group/Rice University.

Rice University scientists who invented laser-induced graphene (LIG) for applications like supercapacitors have now figured out a way to make the spongy graphene either superhydrophobic or superhydrophilic. And it's a gas.

Until recently, the Rice lab of James Tour made LIG only in open air, using a laser to burn part of the way through a flexible polyimide sheet to get interconnected flakes of graphene. But putting the polymer in a closed environment with various gases changed the product's properties.

Forming LIG in argon or hydrogen makes it superhydrophobic, or water-avoiding, a property highly valued for separating water from oil or de-icing surfaces. Forming it in oxygen or air makes it superhydrophilic, or water-attracting, and that makes it highly soluble.

The research at Rice and at Ben-Gurion University in Israel is the subject of a paper in Advanced Materials.

"Labs could make graphene either hydrophobic or hydrophilic before, but it involved multiple steps of either wet-chemical or chemical vapor deposition processes," Tour said. "We're doing this in one step with relatively cheap materials in a homemade atmosphere chamber."

The labs got a bonus when they discovered that fabricating LIG in oxygen increased the number of defects - 5- and 7-atom rings - in the graphene flakes, improving its capacitance and its performance when used as an electrode material for microsupercapacitors.

Changes in the chemical content of the gas and even changes in the direction of the laser raster pattern altered the material, leading the researchers to believe LIG's hydrophobic or -philic properties could be tuned.

They also discovered when they scraped graphene off of a hydrophilic sheet of polymer and turned it into a film, the result was hydrophobic instead. "That leads us to believe the surface orientation of LIG's flakes have a lot to do with how it reacts with water," Tour said. "If the edges are more exposed, it appears to be hydrophilic; if the basal planes are more exposed, their hydrophobic properties take over."

What makes a material "super" in either direction is the angle at which it encounters water. A material with a contact angle of 0 degrees is considered superhydrophilic. In this case, water would lay on the material in a puddle. If the angle is 150 degrees or more, that's superhydrophobic; the angle is determined by how much the water beads. (An angle of 180 degrees would be a sphere sitting perfectly on top of LIG.)

The discovery that surface type and chemistry affect LIG should also allow some leeway in adjusting the material's properties, Tour said. In fact, when they used a sulfur/fluorine gas to make it, they raised LIG's superhydrophobicity to 160 degrees.

Yilun Li, a graduate student at Rice, is lead author of the paper. Co-authors are Rice graduate students Duy Xuan Luong and Jibo Zhang, undergraduate Yash Tarkunde, research scientist Carter Kittrell and former postdoctoral researcher Yongsung Ji; and graduate student Franklin Sargunaraj and co-principal investigator Christopher Arnusch, a lecturer at the Zuckerberg Institute for Water Research at Ben Gurion University of the Negev, Israel. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

CARBON WORLDS
Chemically tailored graphene
Vienna, Austria (SPX) May 16, 2017
Two-dimensional graphene consists of single layers of carbon atoms and exhibits intriguing properties. The transparent material conducts electricity and heat extremely well. It is at the same time flexible and solid. Additionally, the electrical conductivity can be continuously varied between a metal and a semiconductor by, e.g., inserting chemically bound atoms and molecules into the grap ... read more

Related Links
Rice University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Entropy landscape sheds light on quantum mystery

Revolutionary new sunscreen features melanin-mimicking nanoparticles

HP Enterprise unveils computer 'for era of Big Data'

3D-printed maritime propeller on way

CARBON WORLDS
Radio communications have surprising influence on Earth's near-space environment

Navy receiving data terminal sets from Leonardo DRS

European country orders Harris tactical radios

Israel orders satellite-on-the-go for military vehicles

CARBON WORLDS
CARBON WORLDS
2 SOPS says goodbye to GPS satellite

Researchers working toward indoor location detection

Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

CARBON WORLDS
Typhoon and Hawk jets delivered to Oman by BAE

New ejection seat allows Air Force to lift F-35 pilot weight restriction

A-29 chosen for USAF assessment

NASA Completes Balloon Technology Test Flight

CARBON WORLDS
Internet of things made simple: One sensor package does work of many

Engaging diamond for next-era transistors

Managing stress helps transistor performance

Achieving near-perfect optical isolation using opto-mechanical transparency

CARBON WORLDS
NASA's CPEX tackles a weather fundamental

Earth's atmosphere more chemically reactive in cold climates

First space-based sodium LIRDAR will study poorly understood Mesosphere

Extreme weather has greater impact on nature than expected

CARBON WORLDS
Ozone and haze pollution weakens land carbon uptake in China

Cities need to 'green up' to reduce the impact of air pollution

Vietnam arrests activist as MP resigns over mass fish deaths

Plastic trash chokes remote South Pacific island









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.