Space Industry and Business News  
STELLAR CHEMISTRY
Gas giant composition not determined by host star
by Staff Writers
Pasadena CA (SPX) Dec 04, 2019

stock illustration only

A surprising analysis of the composition of gas giant exoplanets and their host stars shows that there isn't a strong correlation between their compositions when it comes to elements heavier than hydrogen and helium, according to new work led by Carnegie's Johanna Teske and published in the Astronomical Journal. This finding has important implications for our understanding of the planetary formation process.

In their youths, stars are surrounded by a rotating disk of gas and dust from which planets are born. Astronomers have long wondered how much a star's makeup determines the raw material from which planets are constructed - a question that is easier to probe now that we know the galaxy is teeming with exoplanets.

"Understanding the relationship between the chemical composition of a star and its planets could help shed light on the planetary formation process," Teske explained.

For example, previous research indicated that the occurrence of gas giant planets increases around stars with a higher concentration of heavy elements, those elements other than hydrogen and helium. This is thought to provide evidence for one of the primary competing theories for how planets form, which proposes that gas giant planets are built from the slow accretion of disk material until a core about 10 times Earth's mass is formed. At this point, the solid baby planetary interior is able to surround itself with helium and hydrogen gas, birthing a mature giant planet.

"Previous work looked at the relationship between the presence of planets and how much iron exists in the host star, but we wanted to expand that to include the heavy element content of the planets themselves, and to look at more than just iron," explained co-author Daniel Thorngren, who completed much of the work as a graduate student at UC Santa Cruz and is now at the Universite de Montreal.

Teske, Thorngren and their colleagues - Jonathan Fortney of UC Santa Cruz, Natalie Hinkel of the Southwest Research Institute, and John Brewer of San Francisco State University - compared the bulk heavy element content of 24 cool, gas giant planets to the abundances of "planet-forming elements" carbon, oxygen, magnesium, silicon, iron, and nickel in their 19 host stars. (Some stars host multiple planets.)

They were surprised to find that there was no correlation between the amount of heavy elements in these giant planets and the amount of these planet-forming elements in their host stars So how can astronomers explain the established trend that stars rich in heavy elements are more likely to host gas giant planets?

"Unraveling this discrepancy could reveal new details about the planet formation process," explained Fortney. "For example, what other factors are contributing to a baby planet's composition as it forms? Perhaps its location in the disk and how far it is from any neighbors. More work is necessary to answer these crucial questions."

One clue may come from the authors' combined results bundling the heavy elements into groupings that reflect their characteristics. The authors saw a tentative correlation between a planet's heavy elements and its host star's relative abundance of carbon and oxygen, which are called volatile elements, versus the rest of the elements included in this study, which fall into the group called refractory elements.

These terms refer to the elements' low boiling points - volatility - or their high melting points - in the case of the refractory elements. Volatile elements may represent an ice-rich planetary composition, whereas refractory elements may indicate a rocky composition.

Teske said: "I'm excited to explore this tentative result further, and hopefully add more information to our understanding of the relationships between star and planetary compositions from upcoming missions like NASA's James Webb Space Telescope, which will be able to measure elements in exoplanet atmospheres."

Research paper


Related Links
Carnegie Institution for Science
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Giant magnetic ropes in a galaxy's halo
Socorro NM (SPX) Nov 27, 2019
This image of the "Whale Galaxy" (NGC 4631), made with the National Science Foundation's Karl G. Jansky Very Large Array (VLA), reveals hair-like filaments of the galaxy's magnetic field protruding above and below the galaxy's disk. The spiral galaxy is seen edge-on, with its disk of stars shown in pink. The filaments, shown in green and blue, extend beyond the disk into the galaxy's extended halo. Green indicates filaments with their magnetic field pointing roughly toward us and blue with the fie ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Dutch antennas unfolded behind the moon

New launch communications segment empowers Artemis

Cleaning the dishes is a dusty job in outback Australia

Smart satellites to the rescue of broken satellites

STELLAR CHEMISTRY
General Dynamics receives $730M for next-gen satcom system

Airbus' marks 50 years in Skynet secure satellite communications for UK

Lockheed Martin gets $3.3B contract for communications satellite work

GenDyn nets $783M for next-gen Navy MUOS operations

STELLAR CHEMISTRY
STELLAR CHEMISTRY
China launches two more BeiDou satellites for GPS system

Russia to launch glass sphere into space before new year to obtain accurate Earth data

Lockheed Martin GPS Spatial Temporal Anti-Jam Receiver System to be integrated in F-35 modernization

GPS III Ground System Operations Contingency Program Nearing Operational Acceptance

STELLAR CHEMISTRY
Bell Boeing awarded $218.7M for V-22 Osprey support

Airbus fires 16 over suspected German army spying: report

The AWACS, NATO's reconnaissance air wing

Electric aircraft - novel configurations open up new possibilities

STELLAR CHEMISTRY
A record-setting transistor

Toward more efficient computing, with magnetic waves

End of an era as Japan's Panasonic exits chip business

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability

STELLAR CHEMISTRY
NASA, French space laser measures massive migration of ocean animals

China launches new Earth observation satellite

The Eurasian continent remembers and amplifies cold waves as the Arctic warms

NASA embarks on 5 expeditions targeting air, land and sea across US

STELLAR CHEMISTRY
Smog in Iran shuts schools, universities

In Spain, how nutrients poisoned one of Europe's largest saltwater lagoons

Aegean volunteers battle to turn plastic waste tide

Slovakia bans single-use plastics from 2021









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.