Space Industry and Business News  
EARTH OBSERVATION
GOES-17 begins move to its new operational position
by Staff Writers
Washington DC (SPX) Oct 23, 2018

GOES-17 will considerably improve weather forecasting capabilities across the western United States, particularly in Alaska. "With GOES-17, we will have unprecedented coverage of Alaska from geostationary orbit. The GOES-17 imager has four times the resolution of the previous GOES imager, which will make a substantial difference in northern latitudes," said Dan Lindsey, senior scientific advisor to the GOES-R Series Program. "GOES-17 is going to provide significant benefit for monitoring hazards often experienced in Alaska such as wildfires, volcanic ash, snow and sea ice."

NOAA's GOES-17 satellite is getting ready to move to its new vantage point at 137.2 degrees west longitude, allowing us to see the weather at high resolution in the western U.S., Alaska and Hawaii, and much of the Pacific Ocean.

On a warm, sunny evening in Cape Canaveral, Florida, NOAA launched its newest geostationary satellite, GOES-S, into space from NASA's Kennedy Space Center. Eleven days after the March 1, 2018 launch, GOES-S reached its geostationary orbit 22,240 miles from Earth and officially became GOES-17. For the past seven months, the satellite has been in a temporary position - at 89.5 degrees west longitude - known as its on-orbit checkout location. Since then, scientists have been testing and calibrating GOES-17's instruments so it is ready for "prime time" when the satellite becomes operational.

But before that happens, GOES-17 first has to move to its new orbital position over Earth's equator at 137.2 degrees west longitude. This relocation process, known as "drift," will take about three weeks to complete.

What Happens During Drift?
On October 24, at 1:40 p.m. EDT, GOES-17 will begin moving westward - at a rate of 2.5 degrees longitude per day - until it reaches its new position on November 13.

During the drift period, five of GOES-17's instruments (ABI, GLM, SUVI, SEISS and EXIS) will not be collecting or sending us any data. These are the high-tech sensors we use to see clouds at high resolution, map lightning flashes, or monitor solar flares from space. Other features, including the Search and Rescue Satellite-Aided Tracking (SARSAT) system will also be disabled.

How exactly do these satellites physically get moved from point A to point B thousands of miles above Earth? NOAA's Office of Satellite Product and Operations team can plan all of these maneuvers using navigation software. For a satellite to change its orbital position, it follows a series of commands uploaded by the operations team to the spacecraft's memory. The mission operations center validates and rehearses these maneuver sequences on the ground using a satellite simulator.

Normally, satellites maintain the same distance from Earth while operational and transmitting data. During drift, however, GOES-17's altitude will actually be raised slightly (by about 125 miles). This maneuver helps nudge the satellite to begin moving into its new orbital position. After GOES-17 finishes drifting, NOAA's mission operations team will lower the satellite back to its normal operating altitude. This raising and lowering process is used any time a geosynchronous satellite needs to change orbital positions.

GOES East and GOES West coverage of Western Hemisphere.
When GOES-17 reaches 137.2 degrees west on November 13, the satellite's instruments won't be turned on right away. First, a team of scientists will have to calibrate the instruments to ensure everything is working properly. If everything checks out, the transmitters aboard the spacecraft will be turned back on.

The next big milestone comes November 15, 2018. That's when GOES-17 will start sending imagery and data via the GOES Rebroadcast System, and we'll start seeing the first views of Alaska, Hawaii and the Pacific Ocean from GOES-17's new orbital position. It will be an exciting day for all of us satellite enthusiasts, but the satellite won't officially be operational just yet. First, GOES-17 will undergo three more weeks of testing to make sure it's ready for "prime time." If everything is working properly, GOES-17 will go into operations as NOAA's GOES West satellite on December 10, 2018.

GOES-17 will considerably improve weather forecasting capabilities across the western United States, particularly in Alaska. "With GOES-17, we will have unprecedented coverage of Alaska from geostationary orbit. The GOES-17 imager has four times the resolution of the previous GOES imager, which will make a substantial difference in northern latitudes," said Dan Lindsey, senior scientific advisor to the GOES-R Series Program. "GOES-17 is going to provide significant benefit for monitoring hazards often experienced in Alaska such as wildfires, volcanic ash, snow and sea ice."

As the sister satellite to GOES-16, located in the GOES East position, GOES-17 will extend high-resolution satellite coverage from the west coast of Africa across much of the Pacific Ocean.

The Goes-15 Drift
Around the same time that GOES-17 starts to drift, NOAA's current GOES West satellite, GOES-15, will also move to a new orbital home, "making room" for the newcomer. Currently, GOES-15 is keeping watch over the Western U.S. and the Pacific Ocean from 135 degrees west longitude. On October 23, one day before the GOES-17 drift begins, GOES-15 will start its own orbital relocation. While GOES-17 will move west, GOES-15 will be moving east at a rate of 0.88 degrees longitude per day until it reaches its new orbital position at 128 degrees west.

Because it won't need to move as far as GOES-17, the GOES-15 drift will only take nine days to complete. The latter satellite will reach its new orbital position on November 1. Unlike GOES-17, all of GOES-15's instruments will remain on during the drift.

Tandem Operations
Although GOES-15 will hand its "GOES West" title to GOES-17 in mid-December 2018, the former satellite won't fade into sunset right away. Due to the technical issues with GOES-17's Advanced Baseline Imager (or ABI, the satellite's primary instrument), NOAA plans to operate GOES-15 and GOES-17 in tandem for at least six months. This will allow scientists to see how well GOES-17 is working as the new GOES West operational satellite.

While GOES-17 will experience data outages from some of its infrared channels overnight during the warmest parts of the year (before and after the vernal and autumnal equinox, when the instrument absorbs the highest amount of solar radiation), a team of experts has made excellent progress optimizing the performance of the instrument through operational changes. "The GOES-17 ABI is now projected to deliver more than 97 percent of the data it was designed to provide, a remarkable recovery," said Pam Sullivan, System Program Director for the GOES-R Series Program. "We are confident the GOES constellation will continue to meet the needs of forecasters across the country."

Looking ahead, NOAA is also implementing changes to the ABI on its future geostationary satellites, GOES-T and GOES-U, to reduce the risk of cooling system anomalies that were seen in GOES-17. The instrument radiator is being redesigned to improve its reliability. Due to this redesign, the planned launch of GOES-T in mid-2020 will be delayed. Once the new ABI radiator design is approved, NOAA will determine a new launch readiness date.

But before then, atmospheric scientists and weather enthusiasts can look forward to GOES-17's next-generation imagery of developing storms, wildfires, and other environmental phenomena in Alaska, Hawaii, and much of the Pacific Ocean extending all the way to New Zealand. We'll start seeing these views shortly after GOES-17 completes the journey to its new orbital position at 137.2 degrees west - the future home of NOAA's new GOES West satellite.


Related Links
GOES-17
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARTH OBSERVATION
Earth observation data market to reach $2.4B
Montreal, Paris (SPX) Oct 22, 2018
According to the 11th edition of Euroconsult's report, Satellite-Based Earth Observation: Market Prospects to 2027, the commercial Earth observation (EO) data market could reach $2.4 billion in 2027, driven by a mixture of defense and new commercial markets and supported by the arrival of new constellation operators. The EO market for value-added services (VAS) should reach over $5.7 billion by 2027; potential new service areas with entrants focusing on developing constellations to support high-fr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
QuTech researchers put forward a roadmap for quantum internet development

Orbit Logic's scheduling software selected for NASA satellite servicing mission

Scientists discover first high-temperature single-molecule magnet

Bursting the clouds for better communication

EARTH OBSERVATION
Military communications satellite online in orbit following launch

Navistar contracted by Army for MRAP tech support

Aerojet Rocketdyne powers 4th AEHF-4 to orbital position

Scientists want to blast holes in clouds with laser to boost satellite communication

EARTH OBSERVATION
EARTH OBSERVATION
China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

EARTH OBSERVATION
Rockwell Collins wins bid for Navy aircraft repair

Northrop contracted for electronics upgrades on Growler, Prowler

AAR, Boeing, StandardAero contracted for P-8A Poseidon support

Dandelion seeds reveal newly discovered form of natural flight

EARTH OBSERVATION
First proof of quantum computer advantage

Announcing the discovery of an atomic electronic simulator

Electrical enhancement: Engineers speed up electrons in semiconductors

Printed 3D supercapacitor electrode breaks records in lab tests

EARTH OBSERVATION
Government of Canada to invest $7.2M in exactEarth

Earth observation data market to reach $2.4B

DigitalGlobe expands NASA partnership with sole-source EO data contract

Earth's core is definitely solid, study finds

EARTH OBSERVATION
Plastic piling up in Japan after China waste ban: survey

Delhi holds breath as burning farms herald pollution season

Study: Air pollution deaths in U.S. dropped by half between 1990, 2010

Swim team braves pollution to dive into Gaza waters









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.