Space Industry and Business News  
CHIP TECH
Fundamental solid state phenomenon unraveled
by Staff Writers
Frankfurt, Germany (SPX) Dec 20, 2016


Electrons embedded in the atomic lattice - the components of a solid. The mutual repulsion of the electrons prevents them from coming into close contact. This impedes the electron flow and the system can become an insulator. Image courtesy Dr. Ulrich Tutsch. For a larger version of this image please go here.

Whether water freezes to ice, iron is demagnetized or a material becomes superconducting - for physicists there is always a phase transition behind it. They endeavour to understand these different phenomena by searching for universal properties. Researchers at Goethe University Frankfurt and Technische Universitat Dresden have now made a pioneering discovery during their study of a phase transition from an electrical conductor to an insulator (Mott metal-insulator transition).

According to Sir Nevill Francis Mott's prediction in 1937, the mutual repulsion of charged electrons, which are responsible for carrying electrical current, can cause a metal-insulator transition. Yet, contrary to common textbook opinion, according to which the phase transition is determined solely by the electrons, it is the interaction of the electrons with the atomic lattice of the solid which is the determinant factor. The researchers have reported this in the latest issue of the Science Advances journal.

The research group, led by Professor Michael Lang of the Physics Institute at Goethe University Frankfurt, succeeded in making the discovery with the help of a homemade apparatus which is unique worldwide. It allows the measurement of length changes at low temperatures under variable external pressure with extremely high resolution. In this way, it was possible to prove experimentally for the first time that it is not just the electrons which play a significant role in the phase transition but also the atomic lattice - the solid's scaffold.

"These experimental results will herald in a paradigm shift in our understanding of one of the key phenomena of current condensed matter research", says Professor Lang. The Mott metal-insulator transition is namely linked to unusual phenomena, such as high-temperature superconductivity in copper oxide-based materials. These offer tremendous potential for future technical applications.

The theoretical analysis of the experimental findings is based on the fundamental notion that the many particles in a system close to a phase transition not only interact with their immediate neighbours but also "communicate" over long distances with all other particles. As a consequence, only overarching aspects are important, such as the system's symmetry. The identification of such universal properties is thus the key to understanding phase transitions.

"These new insights open up a whole new perspective on the Mott metal-insulator transition and permit more sophisticated theoretical modelling of the phase transition", explains Dr. Markus Garst, Senior Lecturer at the Institute of Theoretical Physics of Technische Universitat Dresden.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Goethe University Frankfurt
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Stamping technique creates tiny circuits with electronic ink
Boston MA (SPX) Dec 13, 2016
The next time you place your coffee order, imagine slapping onto your to-go cup a sticker that acts as an electronic decal, letting you know the precise temperature of your triple-venti no-foam latte. Someday, the high-tech stamping that produces such a sticker might also bring us food packaging that displays a digital countdown to warn of spoiling produce, or even a window pane that shows the d ... read more


CHIP TECH
Uncovering the secrets of water and ice as materials

The hidden side of sulfur

Chemical trickery corrals 'hyperactive' metal-oxide cluster

High Resolution Imaging of Hypervelocity Impacts

CHIP TECH
Underwater radio, anyone?

Japan to Launch First Military Communications Satellite on January 24

Intelsat General to provide satellite services to RiteNet for US Army network

NSA gives Type1 certification to Harris radio

CHIP TECH
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

CHIP TECH
Europe's own satnav Galileo goes live

Alpha Defence Company To Make Navigation Satellites For ISRO

Austrian cows swap bells from 'hell' for GPS

Galileo, Europe's own satnav, to go online

CHIP TECH
360-Degree Airport Simulator Tests the Future of Air Traffic Control

Northrop Grumman completes E-2D Advanced Hawkeye flight test

US military resumes Osprey flights in Japan after crash

Raytheon to provide new F-16 mission computers for U.S. Air Force

CHIP TECH
World's smallest radio receiver has building blocks the size of 2 atoms

Stamping technique creates tiny circuits with electronic ink

Electron highway inside crystal

Further improvement of qubit lifetime for quantum computers

CHIP TECH
There's a jet stream in our core

Space-based lidar shines new light on plankton

Revolutions in understanding the ionosphere, Earth's interface to space

Researchers dial in to 'thermostat' in Earth's upper atmosphere

CHIP TECH
China chokes under heavy smog with worse ahead

Planes grounded as smog chokes China for fifth day

Mosul battle leaving legacy of environmental damage

Beijing issues red alert for severe air pollution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.