Space Industry and Business News  
STELLAR CHEMISTRY
Fundamental particles modelled in beam of light
by Staff Writers
Birmingham UK (SPX) Nov 23, 2021

Skyrmion particle modelled in light

Scientists at the University of Birmingham have succeeded in creating an experimental model of an elusive kind of fundamental particle called a skyrmion in a beam of light.

The breakthrough provides physicists with a real system demonstrating the behaviour of skyrmions, first proposed 60 years ago by a University of Birmingham mathematical physicist, Professor Tony Skyrme.

Skyrme's idea used the structure of spheres in 4-dimensional space to guarantee the indivisible nature of a skyrmion particle in 3 dimensions. 3D particle-like skyrmions are theorised to tell us about the early origins of the Universe, or about the physics of exotic materials or cold atoms. However, despite being investigated for over 50 years, 3D skyrmions have been seen very rarely in experiments. The most current research into skyrmions focuses on 2D analogues, which shows promise for new technologies.

In a new study, published in Nature Communications, the international collaboration between researchers at the University of Birmingham, Lancaster, Munster (Germany) and RIKEN (Japan) has demonstrated for the first time how skyrmions can be measured in three dimensions.

Professor Mark Dennis, who led the research, said: "Skyrmions have intrigued and challenged physicists for many decades. Although we're making good progress investigating skyrmions in 2D, we live in a 3D world. We need a system that can model a skyrmion in all its possible states in a way that could be measured. We realised that a beam of light could be harnessed for this purpose because we are able to closely control its properties, and so use it as a platform to model our skyrmions. With this approach, we can start to truly understand these objects and realise their scientific potential."

To create their model, Dr Danica Sugic and Professor Dennis, in the University's School of Physics and Astronomy, cast the standard description of light, the polarisation (direction the in which the light waves travel) and phase (the position of the light waves' vibration) in terms of a sphere in 4-dimensional space, crucial to Skyrme's original vision.

This then allowed the Skyrmion field to be designed and engineered into a beam of laser light in an experiment led by Professor Cornelia Denz, University of Munster. The team used cutting-edge measurements to determine the precise structure of the skyrmion.

"These objects are actually quite intricate, from a geometric point of view," said Dr Sugic. "They resemble a complex system of interlocking rings, with the whole forming a particle-like structure. What's particularly interesting is the skyrmion's topological properties - they can be distorted, stretched or squeezed, but will not come apart. This robustness is one of the properties that scientists are most interested in exploiting."

Research Report: "Particle-like topologies in light"


Related Links
University of Birmingham
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
How ultracold, superdense atoms become invisible
Boston MA (SPX) Nov 19, 2021
An atom's electrons are arranged in energy shells. Like concertgoers in an arena, each electron occupies a single chair and cannot drop to a lower tier if all its chairs are occupied. This fundamental property of atomic physics is known as the Pauli exclusion principle, and it explains the shell structure of atoms, the diversity of the periodic table of elements, and the stability of the material universe. Now, MIT physicists have observed the Pauli exclusion principle, or Pauli blocking, in a com ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
DARPA focusing on biomanufacturing to B-SURE

Salvaging rare earth elements from electronic waste

When debris disaster strikes

Researchers recreate deep-Earth conditions to see how iron copes with extreme stress

STELLAR CHEMISTRY
Northrop Grumman Australia teams with Inmarsat for sovereign satellite capability

Optus Selects Launch Partner for Next Gen Satellite

Isotropic Systems and SES redefine global satellite services with first-ever multi-orbit field tests

France launches state-of-art military communications satellite

STELLAR CHEMISTRY
STELLAR CHEMISTRY
US Space Force contracts Lockheed Martin for three more GPS IIIF satellites

Spirent Offers First Commercially Available Test Capability for Galileo HAS

China to share its Beidou expertise

China and Africa will strengthen cooperation on Beidou satellite system

STELLAR CHEMISTRY
Cathay Pacific to cut flights as Hong Kong Covid rules bite

NASA to highlight passenger-friendly aviation technology

Hybrid-electric propulsion systems enable more climate-friendly air transport

NASA's aviation tech to roll out to airports, save time for passengers

STELLAR CHEMISTRY
UArizona researchers develop ultra-thin 'computer on the bone'

Study challenges standard ideas about piezoelectricity in ferroelectric crystals

Pushing the limits of electronic circuits

Lithography-free carbon nanotube arrays: The simple way to grow an army of tiny superheroes

STELLAR CHEMISTRY
China launches new satellite for Earth observation

China launches new satellite

NASA Study Traces Decade of Ammonia Air Pollution in Africa

Planet and New Light Technologies deliver disaster imagery to FEMA

STELLAR CHEMISTRY
Delhi to reopen schools as smog goes from worse to bad

'It's killing us': Delhi's smog-choked roads take their toll

US throws support behind treaty to curb plastic

'Trash music': Turkish band recycles rubbish into sounds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.