Space Industry and Business News  
TIME AND SPACE
From the atomic to the nuclear clock
by Staff Writers
Munich, Germany (SPX) May 10, 2016


The experimental set-up that led to the first direct detection of the isomer Th-229m. The various vacuum chambers house (from left to right) the buffer-gas cell containing the uranium isotope U-233, and the instruments dedicated to ion-beam extraction, mass separation and determination of the decay spectrum. Image courtesy L. von der Wense/LMU. For a larger version of this image please go here.

Measuring time using oscillations of atomic nuclei might significantly improve precision beyond that of current atomic clocks. Physicists have now taken an important step toward this goal.

Atomic clocks are currently our most precise timekeepers. The present record is held by a clock that is accurate to within a single second in 20 billion years. Researchers led by Ludwig-Maximilians-Universitaet (LMU) in Munich physicists Peter Thirolf, Lars von der Wense and Benedict Seiferle have now experimentally identified a long-sought excitation state, a nuclear isomer in an isotope of the element thorium (Th), which could enhance this level of accuracy by a factor of about ten.

Their findings are reported in the scientific journal "Nature". The team also includes scientists based at Johannes Gutenberg University Mainz, the Helmholtz Institute Mainz and the GSI Helmholtz Centre for Heavy-Ion Research in Darmstadt, Germany.

The heart of timekeeping
The second is our basic unit for the measurement of time, and is tied to the oscillation period of electrons in the atomic shell of the element cesium (Cs). The best atomic clock currently in use boasts a relative precision of 2+ 10-18.

"Even greater levels of accuracy could be achieved with the help of a so-called nuclear clock, based on oscillations in the atomic nucleus itself rather than oscillations in the electron shells surrounding the nucleus," says Thirolf. "Furthermore, as atomic nuclei are 100,000 times smaller than whole atoms, such a clock would be much less susceptible to perturbation by external influences."

However, of the more than 3300 known types of atomic nuclei, only one potentially offers a suitable basis for a nuclear clock - the nucleus of the thorium isotope with atomic mass 229 (Th-229), which, however, does not occur naturally.

For over 40 years physicists have suspected this nucleus to exhibit an excited state whose energy lies only very slightly above that of its ground state. The resulting nuclear isomer, Th-229m, possesses the lowest excitation state in any known atomic nucleus.

"Th-229m is further expected to show a rather long half-life, between minutes and several hours. It should thus be possible to measure with extremely high precision the frequency of the radiation emitted when the excited nuclear state falls back to the ground state," Thirolf explains.

First direct detection of the transition
However, direct detection of the thorium isomer Th-229m has never been achieved. "Up until now, the evidence for its existence has been purely indirect," says Thirolf.

Together with his colleagues, he has now succeeded in detecting the elusive nuclear transition in a complex experiment. They made use of uranium-233 as a source of Th-229m, which is produced in the radioactive alpha decay of uranium-233. In an experimental tour-de-force, the scientists isolated the isomer as an ion beam.

"Using a microchannel plate detector, we were then able to measure the decay of the excited isomer back to the ground state of Th-229 as a clear and unambiguous signal. This constitutes direct proof that the excited state really exists," says Thirolf. "This breakthrough is a decisive step toward the realization of a working nuclear clock," he adds.

"Our efforts to reach this goal in the framework of the European Research Network nuClock will now be redoubled. The next step is to characterize the properties of the nuclear transition more precisely - its half-life and, in particular, the energy difference between the two states.

"These data will allow laser physicists to setting to work on a laser that can be tuned to the transition frequency, which is a prerequisite for an optical control of the transition."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ludwig-Maximilians-Universitat Munchen
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
The Universe, where space-time becomes discrete
Trieste, Italy (SPX) Apr 25, 2016
Our experience of space-time is that of a continuous object, without gaps or discontinuities, just as it is described by classical physics. For some quantum gravity models however, the texture of space-time is "granular" at tiny scales (below the so-called Planck scale, 10-33 cm), as if it were a variable mesh of solids and voids (or a complex foam). One of the great problems of physics today is ... read more


TIME AND SPACE
Accelerating complex computer simulations: thinking beyond ones and zeros

Airbus Defence and Space to lead TeSeR, next EU project to clean up space

Army investigating new materials for explosive, propellant use

Engineers create a better way to boil water

TIME AND SPACE
Harris providing advanced satcom terminals to Army

Elbit receives European order for tactical radios

Haigh-Farr showcases Antenna Solutions at DATT Summit

U.S. Army orders radios for Mid-East, African countries

TIME AND SPACE
SpaceX lands rocket's first stage after space launch

SpaceX successfully lands rockets first stage after space launch

Agreement Signed for Airbus Safran Launchers

SpaceX to launch Japanese satellite early Friday

TIME AND SPACE
Satellites 11 and 12 join working Galileo fleet

Operation of 'Indian GPS' will take some more time: ISRO

Air Force awards GPS 3 launch services contract

India gets homegrown satellite navigation system

TIME AND SPACE
Personal aircraft aiming to take off from your home

NASA, FAA Demonstrate Wireless Communication with Aircraft

Airbus sets sights on the stratosphere with glider flight

Navy opens Boeing-equipped P-8 maintenance center

TIME AND SPACE
Researchers create a first frequency comb of time-bin entangled qubits

A brand-new way to produce electron spin currents

NREL offers path to high-performance 2-D semiconductor devices

Atoms placed precisely in silicon can act as quantum simulator

TIME AND SPACE
Now 40, NASA's LAGEOS Set the Bar for Studies of Earth

Underground fungi detected from space

A Cautionary Tale From Planet Earth

Cracking the Code in Satellite Data

TIME AND SPACE
Religion goes green in Taiwan pollution battle

Mexico City lifts pollution alert

New Yorkers to pay for disposable plastic and paper bags

Mexico City businesses say smog alert cost $300 mn









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.