Space Industry and Business News  
From Dinosaurs To Slime

The scientists also dissolved bone in acid, as had been done previously, and found the same soft tissue structures. They conducted a comparison using infrared mass spectroscopy and determined the structures were more closely related to modern biofilm than modern collagen, extracellular proteins associated with bone. Carbon dating placed the origin at around 1960.
by Staff Writers
Moffett Field CA (SPX) Aug 06, 2008
Paleontologists in 2005 hailed research that apparently showed that soft, pliable tissues had been recovered from dissolved dinosaur bones, a major finding that would substantially widen the known range of preserved biomolecules.

The finding would also help astrobiologists understand the types of biosignatures that could be used to search for signs of past life on other planets.

But new research challenges that finding and suggests that the supposed recovered dinosaur tissue is in reality biofilm - or slime.

"I believed that preserved soft tissues had been found, but I had to change my opinion," said Thomas Kaye, an associate researcher at the Burke Museum of Natural History and Culture at the University of Washington. "You have to go where the science leads, and the science leads me to believe that this is bacterial biofilm."

The original research, published in Science magazine, claimed the discovery of blood vessels and what appeared to be entire cells inside fossil bone of a Tyrannosaurus rex. The scientists had dissolved the bone in acid, leaving behind the blood vessel- and cell-like structures.

But in a paper published July 30 in PloS One, a journal of the open-access Public Library of Science, Kaye and his co-authors contend that what was really inside the T. rex bone was slimy biofilm created by bacteria that coated the voids once occupied by blood vessels and cells.

He likens the phenomenon to what would happen if you left a pail of rainwater sitting in your backyard. After a couple of weeks you would be able to feel the slime that had formed on the inner walls of the bucket.

"If you could dissolve the bucket away, you'd find soft, squishy material in the shape of the bucket, and that's the slime," Kaye said. "The same is true for dinosaur bones. If you dissolve away the bone, what's left is biofilm in the shape of vascular canals."

Co-authors of the new paper are Gary Gaugler of Microtechnics Inc. of Granite Bay, Calif., and Zbigniew Sawlowicz of Jagiellonian University in Poland.

Kaye said he began his research with the hope of being the second person to find preserved dinosaur tissues. In addition to the acid bath procedure used in the previous work, he added examination by electron microscope before the bones were dissolved. He was surprised by the findings.

The researchers found that what previously had been identified as remnants of blood cells, because of the presence of iron, were actually structures called framboids, microscopic mineral spheres bearing iron.

They found similar spheres in a variety of other fossils from various time periods, including an extinct sea creature called an ammonite. In the ammonite they found the spheres in a place where the iron they contain could not have had any relationship to the presence of blood.

"We determined that these structures were too common to be exceptionally preserved tissue. We realized it couldn't be a one-time exceptional preservation," Kaye said.

The scientists also dissolved bone in acid, as had been done previously, and found the same soft tissue structures. They conducted a comparison using infrared mass spectroscopy and determined the structures were more closely related to modern biofilm than modern collagen, extracellular proteins associated with bone. Carbon dating placed the origin at around 1960.

Using an electron microscope, the researchers saw coatings on the vascular canal walls that contained gas bubbles, which they associated with the presence of methane-producing bacteria.

In addition, they examined what looked like tiny cracks within the vascular canals and found that they were actually small troughs, or channels.

Study at high magnification revealed the channels had rounded bottoms and bridged each other, indicating they were organically created, likely by bacteria moving in a very thick solution.

"From this evidence, we could determine that what had previously been reported as dinosaurian soft tissues were in fact biofilms, or slime," Kaye said.

Related Links
Burke Museum of Natural History and Culture
Darwin Today At TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


New Insights On The Evolution Of Snake Fangs
New York NY (SPX) Aug 06, 2008
A rare examination of snake embryos suggests that an ancient change in the development of the upper jaw in some snakes may have paved the way for the evolution of fangs and associated venom glands.







  • Yahoo board re-elected after blasting by shareholders
  • China has 'nothing to fear' from Internet: White House
  • Internet Addiction Growing Around The World
  • Ex-Google workers launch Internet search rival Cuil

  • Russia Puts Off Launch Of Inmarsat Satellite Until August 19
  • Russia Launching Thai Earth Remote-Sensing Satellite
  • Europe's Ariane rocket must develop or die: ex-CEO
  • Proton Launch With Inmarsat Satellite Delayed

  • NASA evaluates new wing sensor
  • Russia And China May Co-Design New Passenger Plane
  • China Southern Airlines managers take paycut due to oil prices
  • British PM blasts polluting 'ghost' flights

  • Defense Support Program Satellite Decommissioned
  • Raytheon Bids For USAF Command And Control Contract
  • Northrop Grumman Demonstrates Multi-Function Electronic Warfare System
  • New Military Communications System Progressing At Lockheed Martin

  • Argonne Scientists Discover New Class Of Glassy Material
  • Satgate Contracts Four Transponders At New SES ASTRA Orbital Position
  • Scientist says feathers are future of Asia construction
  • Seanodes Computing Solution In The Stars For NASA Astrophysics Group

  • NASA names aeronautics administrator
  • Edwin Miller Leads Reusable Solid Rocket Booster Project
  • Raytheon Network Centric Systems Names Green VP Joint Operations And Integration
  • NASA Names Strain New Goddard Space Flight Center Director

  • ESA Meets Increasing Demand For Earth Observation Data
  • Tropical Storm Edouard Steams Toward Texas And Louisiana
  • Global Air Quality Checks Delivered Hourly From Space
  • Ocean Surface Topography Mission/Jason 2 Begins Mapping Oceans

  • Mobile Social Networking Global Revenues Over 3 Billion Dollars By 2013
  • GyPSii Social Networking Goes Mobile In China On Ramar Phones
  • First-Ever Free-Swimming Leatherback Turtles In New England Tagged
  • India To Soon Get Global Navigation System

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement