Space Industry and Business News  
AEROSPACE
Flying in formation to reduce climate impact
by Staff Writers
Berlin, Germany (SPX) Jun 24, 2021

The rear aircraft 'surfs' on the airflow of the wake vortex

Migratory birds are adept at conserving their energy resources in flight by arranging themselves in V-shaped formations. The birds at the rear essentially 'surf' on the vortices of air created by the bird flying in front, which allows them to save energy during their long journey.

The German Aerospace Center is investigating the possibility of transferring this principle to commercial aircraft on a large scale. As part of the Formation Flight Impact on Climate (FORMIC) project, researchers used software tools to calculate which long-haul flights are suitable for formations comprising two aircraft. Studies carried out by DLR have shown that formation flight can reduce fuel consumption by up to five percent and the climate impact by up to 25 percent.

Surfing on wake vortices
An aircraft always creates two counter-rotating air vortices, referred to as wake vortices, behind it. During take-off and landing, this turbulence puts other aircraft at risk, so a certain amount of time must elapse between aircraft taking off or landing on the same runway. In cruising flight, however, the wake vortices are usually very stable.

During formation flight, a special manoeuvre brings the rear aircraft into the rising air flow created by the aircraft in front, with the autopilot holding the aircraft safely in position and keeping it safely under control.

The rear aircraft uses the wake vortex to generate lift. The technical term for this principle is Air Wake Surfing for Efficiency (AWSE). "The rear aircraft is surfing on the wake vortex of the aircraft in front and can reduce its thrust thanks to the energy this provides. The fuel savings achieved in this way in turn lead to a reduction in greenhouse gas emissions," explains DLR Project Manager Tobias Marks.

Fewer clouds, less global warming
That is not the only way that the climate impact of two aircraft flying close together is reduced compared to two independent flights. When the soot produced during fuel combustion is emitted and meets moist air in the atmosphere, it condenses into contrails. In physical terms, these are clouds and they have a climate impact because cloud cover retains heat in the atmosphere.

The contrails resulting from two aircraft flying in formation share the water content in the atmosphere. This means that there is less scope for contrails to form than with two aircraft flying separately, reducing the climate impact of the flights. The DLR Institute of Atmospheric Physics uses the AirClim programme to calculate these effects. This determines changes in the global average ground-level temperature due to emissions and contrails.

Flying around the world together
Before the COVID-19 pandemic, there were several thousand flights a day, with different types of aircraft travelling around the globe at different altitudes. Integrating formation flight into the existing global air traffic system therefore represents a challenge. The Institute of Air Transportation Systems has developed the MultiFly software toolkit to identify suitable formation flight partners. For the sake of simplicity, the study initially looked only at long-haul flights with the same type of aircraft.

Formation flight offers the greatest potential for fuel savings when used on long-haul flights. The toolkit calculates where two formation partners meet, which route they will fly together and where they will eventually part ways to each head for their own destination airport. The decisive factor for operational success is finding flight pairings between aircraft that can fly together for as long as possible despite departing from different locations.

MultiFly also calculates the expected corresponding fuel and emissions savings. "By considering global air traffic, the use of formation flight could help us achieve a large positive effect for climate protection, and it would require relatively little effort," explains Marks.

Research teams from DLR are working on the FORMIC project alongside the Hamburg University of Technology and RWTH Aachen University. The project is funded by the German Federal Ministry for Economic Affairs and Energy.


Related Links
Institute of Air Transportation Systems at DLR
Aerospace News at SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


AEROSPACE
US Air Force selects Electra for ultra-short takeoff aircraft development
Falls Church VA (SPX) Jun 23, 2021
The U.S. Air Force (USAF) has signed a contract with Electra.aero to strengthen advanced air mobility markets through the development of hybrid-electric propulsion systems for electric ultra-short takeoff and landing (eSTOL) aircraft. Leveraging distributed hybrid-electric propulsion and blown lift, Electra's unique eSTOL aircraft takes off in less than 150 feet, but also offers nearly triple the payload capacity, an order of magnitude longer ranges, and less than half the operating costs of elect ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

AEROSPACE
Northrop Grumman flight tests Digital Wideband AESA Sensor

US Navy tests warship's metal with megablast

Compact quantum computer for server centers

Meringue-like material could make aircraft as quiet as a hairdryer

AEROSPACE
Filtering out interference for next-generation wideband arrays

ESA helps Europe boost secure connectivity

Isotropic Systems and SES GS complete trials for of new connectivity for US Military

Quantum communication in space moves ahead

AEROSPACE
AEROSPACE
GMV develops a new maritime Galileo receiver

Orolia's GNSS Simulators now support an ultra-low latency of five milliseconds

Lockheed Martin-Built Next Generation GPS III Satellite Propels Itself to Orbit

GMV at the core of the Galileo High Accuracy Service

AEROSPACE
Flying in formation to reduce climate impact

Current air transport climate targets insufficient for trend reversal

US Air Force selects Electra for ultra-short takeoff aircraft development

Aviation's contribution to cutting climate change likely to be small

AEROSPACE
Clearing the way toward robust quantum computing

Physicists uncover secrets of world's thinnest superconductor

Germany eyes technological leap with first quantum computer

Researchers tame silicon to interact with light for next-generation microelectronics

AEROSPACE
Artificial intelligence breakthrough gives longer advance warning of ozone issues

Use of additional Metop-C and Fengyun-3 CD data improves regional weather forecasts

Rising greenhouse gases threaten Arctic ozone layer

Orbital Sidekick announces upcoming launch of its most powerful satellite: Aurora

AEROSPACE
Turks defend nature against Erdogan's development push

GAO: Cost of toxic chemical cleanup at military bases to rise above estimates

About 25% of chemicals in plastics are 'substances of potential concern'

New urban planning software may inspire more sustainable cities









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.