Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Fluid-filled pores separate materials with fine precision
by Staff Writers
Boston MA (SPX) Mar 16, 2015


In this photo, a pipeline transports oil away from the pump site. The benefits of the new fluid-based gating mechanism developed by Wyss Core Faculty member Joanna Aizenberg, such as precise flow separation of materials, materials escape prevention, reduced clogging and huge energy savings, could be leveraged in the oil industry where gas leakage and fuel line clogs are detrimental to the environment and industry.

In nature, pores can continuously control how a living organism absorbs or excretes fluids, vapors and solids in response to its environment; for example, tiny holes invisible to the naked eye called stomata cover a plant's leaves and stems as gated openings through which oxygen, carbon dioxide and water vapors are transported in and out during photosynthesis and respiration. And some scientists have proposed that micropores in the tissues of the air sacs of human lungs can open or close to modulate fluid flow based on changes in air pressure or inflammation.

Just as they help control the transport of materials through pores, flow-gating mechanisms have also proved very useful for many practical applications designed by humans, such as gas and liquid separations, dialysis, or blood filtration. But conventional approaches to create synthetic "pores" have resulted in openings or gates that are fixed in geometry, often designed with only one purpose in mind.

To make matters worse, these systems often get clogged during use due to accumulation of materials and fouling, and are also not energy efficient over long periods of use.

Now, a team of Harvard scientists led by Joanna Aizenberg, Ph.D., a Core Faculty member at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Amy Smith Berylson Professor of Materials Science at Harvard School of Engineering and Applied Sciences (SEAS), has developed an entirely new, highly versatile mechanism for controlling passage of materials through micropores, using fluid to modulate their opening and closing.

Aizenberg, who is also Professor of Chemistry and Chemical Biology in Harvard's Faculty of Arts and Sciences and Co-Director of the Kavli Institute for Bionano Science and Technology, calls the new system a "fluid-based gating mechanism." The work is reported in the March 5 issue of Nature.

"The ability to selectively transport or extract materials is valuable for uses such as separating components of oil, gas and wastewater, for filtering blood and fluid samples, and broadly for 3D printing and microfluidic devices," said Aizenberg. "Our new approach harnesses dynamic and responsive control over a highly sensitive and reversible gating mechanism, which we can now apply toward many diverse applications."

Aizenberg's system can separate a wide range of cargos and is extraordinarily precise due to the fact that the fluid-filled gate adjusts to accommodate filtration of each substance it encounters, even while processing a complex mixture of materials.

"The fluid used in the gate is repellent and prevents any material from sticking to it and clogging the system throughout repeated and extended use," said the study's lead author Xu Hou, Ph.D., Research Associate at the Wyss Institute and SEAS. "To accommodate different materials and desired extractions, operators of the system simply need to adjust the pressure to influence what substances will be allowed to flow through the fluid-filled gates."

The system's dynamic control could, for example, prove especially valuable for crude oil transport, in which fuel lines frequently become clogged, leading to high costs and risk of gas accidentally escaping into the environment. Additionally, the tunable pressurization and anti-fouling properties could result in more than 50-percent energy savings compared to current methods.

"Fundamentally, it's an elegant concept. While conventional membrane technology uses all kinds of specialized materials and engineered micropores to achieve selectivity, here we simply use a fluid as a tunable valve," said co-author Alison Grinthal, Ph.D., Research Scientist at Harvard SEAS. "Basic fluid mechanics dictate the precise extraction and output of a wide variety of liquid and gas mixtures according to easily-calculated pressure adjustments."

The next step for the team will be to increase the throughput of the system towards practical use for large-volume substance separation and commercialization.

"Joanna's fluid-based gating approach gracefully recapitulates the functions of pores seen in nature," said Wyss Institute Founding Director Donald Ingber, M.D., Ph.D, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital and Professor of Bioengineering at Harvard SEAS.

"This advance offers an entirely new approach with which to confront a broad range of problems in fields ranging from energy to medicine."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Wyss Institute for Biologically Inspired Engineering at Harvard
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
German govt okays bill to boost electronic appliance recyling
Berlin (AFP) March 11, 2015
German consumers will have the right to hand in discarded electronic appliances, from toasters to TV sets, at large specialist shops under a draft recycling law approved by the cabinet Wednesday. Environment Minister Barbara Hendricks said the blueprint to overhaul an existing law aims to ensure that "in future, still fewer old appliances land in the household rubbish and instead are dispose ... read more


TECH SPACE
German govt okays bill to boost electronic appliance recyling

Researchers develop 'visual Turing test'

Understanding The Electromagnetic Environmental Effects On Space Systems

Google gearing Android for virtual reality: report

TECH SPACE
Navy satellite communications systems getting support services

Russia to Launch Two Military Satellites in February

Navy orders additional LCS mission modules

U.S. EA-18G Growlers getting new electronic warfare system

TECH SPACE
Soyuz Installed at Baikonur, Expected to Launch Wednesday

45th Space Wing unveils multi-vehicle launch support center

THOR 7 being fueled for Arianespace's dual-payload April mission

Arianespace wins SES-15 launch contract

TECH SPACE
ISRO plans to launch navigation satellite by March-end

Galileo satellites ready for fuelling as launcher takes shape

ISRO races to fix glitch in navigational satellite so that it can be launched in time

GPS gaffe surprises Belgian bus tourists

TECH SPACE
Chinese lawyer named first woman to head UN aviation body

No known link between towelette found in Australia and MH370

MH370 report sparks fresh criticism of Malaysia govt, airline

Airlines need to improve despite 'safest' year: IATA chief

TECH SPACE
Quantum sensor's advantages survive entanglement breakdown

Strength in numbers

The taming of magnetic vortices

Important step towards quantum computing: Metals at atomic scale

TECH SPACE
Chinese HD earth observation satellite comes into service

High-Tech UCF Sensor Payload Headed for Stratosphere

Scientists report breakthrough in detecting methane

New detector sniffs out origins of methane

TECH SPACE
Smog documentary blocked by China after becoming viral hit

Hidden hazards found in green products

China vows to fight pollution 'with all might'

Water in smog may reveal pollution sources




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.