Space Industry and Business News  
SOLAR DAILY
Flexible thinking on silicon solar cells
by Staff Writers
Thuwal, Saudi Arabia (SPX) Dec 30, 2019

Flexible thinking on silicon solar cells.

Crystalline silicon solar panels could be just as effective when incorporated into stretchy wearable electronics or flexible robot skin as they are when used as rigid rooftop panels.

KAUST researchers have devised a way to turn rigid silicon into solar cells that can be stretched by a record-breaking 95 percent, while retaining high solar energy capture efficiency of 19 percent.

Although many new solar materials are being investigated, silicon remains by far the photovoltaic industry's favorite.

"Monocrystalline silicon remains the material of choice in the PV industry due to its low cost, nontoxicity, excellent reliability, good efficiency and maturity of the manufacturing process," says Nazek El-Atab, a postdoctoral researcher in the labs of Muhammad Mustafa Hussain, who led the research.

One drawback of silicon, for certain applications, is its rigidity, unlike some thin film solar cells. However, these flexible cells either consist of low-cost, low-efficiency organic materials or more efficient but very expensive inorganic materials. Hussain and his team have now taken a significant step toward overcoming this limitation by developing low-cost, high-efficiency, silicon-based stretchy solar cells.

The key step was to take a commercially available rigid silicon panel and coat the back of the panel with a highly stretchable, inexpensive, biocompatible elastomer called ecoflex.

The team then used a laser to cut the rigid cell into multiple silicon islands, which were held together by the elastomer backing. Each silicon island remained electrically connected to its neighbors via interdigitated back contacts that ran the length of the flexible solar cell.

The team initially made rectangle-shaped silicon islands, which could be stretched to around 54 percent, Hussain says. "Beyond this value, the strain of stretching led to diagonal cracks within the brittle silicon islands," he says.

The team tried different designs to push the stretchability further, mindful that each slice of silicon they removed reduced the area available for light capture. The team tried a diamond pattern before settling on triangles.

"Using the triangular pattern, we achieve world record stretchability and efficiency," Hussain says.

The team plans to incorporate the stretchy silicon solar material to power a multisensory artificial skin developed by Hussain's lab. Making solar panels that stretch with even greater flexibility is also a target.

"The demonstrated solar cells can be mainly stretched in one direction--parallel to the interdigitated back contacts grid," Hussain says. "We are working to improve the multidirectional stretching capability."

Research paper


Related Links
King Abdullah University of Science and Technology (KAUST)
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
A flaky option boosts organic solar cells
Thuwal, Saudi Arabia (SPX) Dec 19, 2019
An inexpensive material, made from tungsten disulfide flakes just a few atoms thick, has helped to improve the performance of organic solar cells1. The discovery by KAUST researchers could be an important step toward bringing these photovoltaic cells into wider use for generating clean electricity. Most solar cells use silicon to absorb light and convert its energy into electricity. But carbon-based semiconductor molecules, used in organic photovoltaics (OPVs), offer some distinct advantages over ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Solving the challenges of long duration space flight with 3D Printing

New nano-barrier for composites could strengthen spacecraft payloads

Calling radio amateurs: help find OPS-SAT!

New laser technique images quantum world in a trillionth of a second

SOLAR DAILY
General Dynamics receives $730M for next-gen satcom system

Airbus' marks 50 years in Skynet secure satellite communications for UK

Lockheed Martin gets $3.3B contract for communications satellite work

GenDyn nets $783M for next-gen Navy MUOS operations

SOLAR DAILY
SOLAR DAILY
US Congress green lights India's NavIC as regional satellite navigation system

Russia postpones Glonass-M launch From Plesetsk over carrier problems

China launches two more BeiDou satellites for GPS system

Russia to launch glass sphere into space before new year to obtain accurate Earth data

SOLAR DAILY
The DFG, DLR and the Helmholtz Association enable cutting-edge research for sustainable aviation

NASA's X-59 quiet supersonic research aircraft cleared for final assembly

NASA approves final assembly for Lockheed's quiet, supersonic X-plane

Seven Hong Kong Airlines planes impounded by authority

SOLAR DAILY
Japan lifts curbs on export of key chip material to S. Korea

Scientists see defects in potential new semiconductor

Transistors can now both process and store information

A platform for stable quantum computing, a playground for exotic physics

SOLAR DAILY
China improves space-based observation of Earth

Model offers clearer understanding of factors that influence monsoon behavior

SubX shows promise for improved monthly weather forecasts

Capella awarded contract to integrate commercial SAR data for National Security

SOLAR DAILY
Spain river littered with dead fish after waste plant fire

Household dust hosts toxic chemicals from LCD screens

Smog forces schools shut in Iran

Bangladesh tears down brick kilns to fight toxic smog









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.