Subscribe free to our newsletters via your
. Space Industry and Business News .




WATER WORLD
Fish have enormous nutrient impacts on marine ecosystems
by Beth Gavrilles for UGA News
Athens GA (SPX) Dec 13, 2012


Craig Layman, an associate professor at Florida International University, conducts research on a reef in the waters of Abaco Island, Bahamas, with Jacob Allgeier, not pictured, a doctoral student at UGA.

Fish play a far more important role as contributors of nutrients to marine ecosystems than previously thought, according to researchers at the University of Georgia and Florida International University. In a pair of papers in the journal Ecology, they show that fish contribute more nutrients to their local ecosystems than any other source-enough to cause changes in the growth rates of the organisms at the base of the food web.

Jacob Allgeier, a doctoral student in the UGA Odum School of Ecology, and Craig Layman, associate professor at Florida International University, led the study, which took place in the waters of a large bay on Abaco Island, Bahamas.

Most tropical coastal ecosystems are nutrient limited, meaning that the system's primary food sources such as algae and seagrass need to have enough nitrogen and phosphorus-in the right proportions-to grow and thrive.

"We've been thinking about the role of fish and the nutrients they're excreting in these ecosystems for a while now," Allgeier said.

In marine food webs, fish are usually thought of as predators, he explained, consuming microorganisms, plants and smaller animals. But fish have another important, although often overlooked, role in the system. Through excretion, they recycle the nutrients they take in, providing the fertilizer sea grass and algae need to grow.

To determine the impact of nutrients from fish, the team needed to compare sites with fish populations of different sizes. Knowing that fish tend to congregate around reefs-the larger the reef, the more fish it attracts-they built a series of artificial reefs of two sizes, large and small, and selected a number of control sites with no reefs at all.

Over the course of two years they surveyed each site periodically to record the number, size and species of fish present. Allgeier created models to estimate the supply of nutrients from all species of fish at the various sites.

The researchers also measured the nutrient content and growth rate of seagrass. They weren't surprised that seagrass at the large reefs grew faster and contained more nutrients than seagrass at the small reefs and control sites-but they were surprised at the magnitude of the difference and the extent to which it occurred.

"The rate of daily seagrass growth ranged from 37 square millimeters at large reefs to 10 square millimeters at control sites-nearly a four-fold difference," Allgeier said.

"Fish are putting an enormous amount of nutrients into this system-it appears to be even more than all other sources, including runoff from golf courses and all other human caused impacts, combined."

The effect extended for roughly three meters around each large reef. The fish were contributing more nutrients than the seagrass could take in, allowing the excess nutrients to drift further away from their source, fertilizing seagrass and algae in ever-widening areas. The researchers anticipate this effect to extend further with increased time.

Allgeier described the large reefs as "biogeochemical hotspots"-areas with particularly high rates of chemicals cycling between organisms and the environment.

"The reefs are nodes within the ecosystem matrix," he said. "They're increasing productivity around the reefs by orders of magnitude. If there are enough of them (reefs), then they may be increasing productivity at the ecosystem level by orders of magnitude as well. That's something we're going to be looking at next."

Allgeier said the team's findings further point to the importance of maintaining a healthy fish community, explaining that different types of fish contribute different amounts of nutrients.

"Even if you have large numbers of fish, if they're dominated by one species, they're filling just one nutrient cycling niche in that ecosystem," he said. "That's not how these systems are used to being fed nutrients."

The papers' coauthors were Lauren Yeager and Elizabeth Stoner of FIU. Funding for both studies was provided by the National Science Foundation and the U.S. Environmental Protection Agency, with logistical support from Friends of the Environment, Abaco, Bahamas.

Both papers are in press and available online (Consumers regulate nutrient limitation regimes and primary production in seagrass ecosystems, Allgeier, Yeager and Layman) and (Thresholds of Ecosystem Response to Nutrient Enrichment from Fish Aggregations, Layman, Allgeier, Yeager and Stoner).

.


Related Links
University of Georgia
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Advance in chromosomal evolution in sea cradles
London, UK (SPX) Dec 13, 2012
The study of chromosome changes arisen during species evolution is a current and intriguing topic that evolutionary biology proposes. However, in several groups (for example, molluscs), and chitons in particular, chromosome studies are scarce, with a few species investigated and analyses performed mostly with simple methods. Only 2,5% of about 900 living species of chitons have been so far ... read more


WATER WORLD
Jury rules Apple iPhone violated MobileMedia patents

XTAR Wins $8 Million In New Business

Boeing, BMW Group to collaborate on carbon fiber recycling

Yahoo! seeks slice of smartphone photo-sharing pie

WATER WORLD
US Air Force selects Raytheon to develop future Protected SATCOM System

General Dynamics Awarded Contract Under New U.S. Army Rapid-Acquisition Communications Program

Astrium to provide military X-band satcoms to six UK Royal Navy vessels

Lockheed Martin to Demonstrate Key Component of Tactical MilSat Communications System

WATER WORLD
Russia works to fix satellite's off-target orbit

ULA Launch Monopoly to End

SPACEX Awarded Two EELV Class Missions From The USAF

Russia Set to Launch Telecoms Satellite for Gazprom

WATER WORLD
Third Boeing GPS IIF Begins Operation After Early Handover to USAF

Putin Urges CIS Countries to Join Glonass

Third Galileo satellite begins transmitting navigation signal

Retired GIOVE-A satellite helps SSTL demonstrate first High Altitude GPS navigation fix

WATER WORLD
New system for aircraft forecasts potential storm hazards over oceans

Commando II Takes To Sky

Rockwell Collins wins Navy E-6b upgrade

Canada widens search for fighter jet beyond F-35

WATER WORLD
Tiny compound semiconductor transistor could challenge silicon's dominance

Berkeley Lab Breaks Ground on Flexible Design Building to Test Low-energy Systems and Components

DuPont Microcircuit Materials Introduces New Low Cost Conductive Inks for Printed Electronics

New '4-D' transistor is preview of future computers

WATER WORLD
Google Maps returns to iPhone after Apple fiasco

Shadows on ice: Proba-1 images Concordia south polar base

Wildfires Light Up Western Australia

Environmental satellite produces first photo of Earth

WATER WORLD
Onion soaks up heavy metal

Toxic cloud in Buenos Aires under control

Peru industrial pollution feeds conflict

China aims to reduce air pollution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement