Space Industry and Business News  
IRON AND ICE
First research results on the 'spectacular meteorite fall' of Flensburg
by Staff Writers
Munster, Germany (SPX) Feb 19, 2020

The meteorite 'Flensburg' in close-up view.

A fireball in the sky, accompanied by a bang, amazed hundreds of eyewitnesses in northern Germany in mid-September last year. The reason for the spectacle was a meteoroid entering the Earth's atmosphere and partially burning up. One day after the observations, a citizen in Flensburg found a stone weighing 24.5 grams and having a fresh black fusion crust on the lawn of his garden.

Dieter Heinlein, coordinator of the German part of the European Fireball Network at the German Aerospace Center in Augsburg, directly recognized the stone as a meteorite and delivered the rock to experts at the "Institut fur Planetologie" at Munster University (Germany).

Prof. Addi Bischoff and PhD student Markus Patzek have been studying the stone mineralogically and chemically ever since. About 15 university and research institutes in Germany, France, and Switzerland now take part in the science consortium.

The first research results show that the meteorite "Flensburg", named after the location of the fall, belongs to an extremely rare type of carbonaceous chondrites.

Scanning electron microscopic analyses prove that it contains minerals, especially sheet silicates and carbonates that formed in the presence of water on small planetesimals in the early history of our solar system. Thus, these types of early parent bodies can be regarded as possible building blocks of the Earth that delivered water.

"The meteorite of Flensburg belongs to an extremely rare meteorite class and is the only meteorite fall of this class in Germany proving that 4.56 billion years ago there must have been small bodies in the early solar system storing liquid water. Perhaps such bodies also delivered water to the Earth," Addi Bischoff said.

Meteorites provide information on the development of the Earth
The new German meteorite "Flensburg" fully fits into the research program of the Collaborative Research Centre "TRR170 - Late Accretion onto Terrestrial Planets", a science cooperation between institutions in Munster and Berlin.

The major aim of the Collaborative Research Centre TRR170 is to understand the late growth history of the terrestrial planets. This leads to the question about the possible building blocks of the Earth.

In order to find answers to this question, the researchers investigate various aspects including meteorites - most of them are fragments of asteroids and can be regarded as the oldest rocks of our solar system. Thus, studying them allows scientists to gain insight into the formation processes of the first solids and accretion and evolution of small bodies and planets in our solar system.

First details on the Flensburg meteorite have just been published in the "Meteoritical Bulletin Database" of the "Meteoritical Society".


Related Links
University Of MUnster
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
Meteorite chunk contains unexpected evidence of presolar grains
St. Louis MO (SPX) Jan 29, 2020
An unusual chunk in a meteorite may contain a surprising bit of space history, based on new research from Washington University in St. Louis. Presolar grains - tiny bits of solid interstellar material formed before the sun was born - are sometimes found in primitive meteorites. But a new analysis reveals evidence of presolar grains in part of a meteorite where they are not expected to be found. "What is surprising is the fact that presolar grains are present," said Olga Pravdivtseva, researc ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Outer Space Chicken

Exotrail Secures Contract with AAC Clyde Space to equip their customers' spacecrafts

Celestia UK to develop advanced antenna systems with Scottish Enterprise Support

Cracks actually protect historical paintings against environmental fluctuation

IRON AND ICE
US Army and Air Force team up for multi-domain operations

Lockheed Martin's Most Advanced Mobile Communications Satellite Launches

Space and Missile Systems Center awards Northrop Grumman $253.6 million for Protected Tactical SATCOM acquisition

AEHF-5 Satellite Control Authority Transferred to Space Operations Command

IRON AND ICE
IRON AND ICE
Four BeiDou satellites start operation in network

Third Lockheed Martin-Built GPS III satellite delivered to Cape Canaveral

Honeywell nets $3B+ deal for new Air Force navigation system sustainment

Google Maps marks 15-year milestone with new features

IRON AND ICE
Electric flight from Mannheim to Berlin in a 19-seater aircraft

Sikorsky lands $470.8M modification for Presidential helicopter upgrade

U.S., Boeing send 3 Super Hornets to Finland for aircraft upgrade

France, Germany sign prototype contract for future fighter jet

IRON AND ICE
New material has highest electron mobility among known layered magnetic materials

New Argonne etching technique could advance the way semiconductor devices are made

Artificial atoms create stable qubits for quantum computing

Rare-earth element material could produce world's smallest transistors

IRON AND ICE
Verifying forecasts for major stratospheric sudden warmings

The atmosphere as global sensor

Ball Aerospace-built Geostationary Air Quality Instrument Launches Successfully

NASA prepares for new science flights above coastal Louisiana

IRON AND ICE
Smog veils Central Asia cities as smoky stoves choke locals

Air pollution costs $2.9 trillion a year: NGO

Global cost of air pollution $2.9 trillion a year: NGO report

Draft US law seeks to make plastic industry responsible for waste









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.