Space Industry and Business News  
TIME AND SPACE
First light for future black hole probe
by Staff Writers
Munich, Germany (SPX) Jan 14, 2016


As part of the first observations with the new GRAVITY instrument the team looked closely at the bright, young stars known as the Trapezium Cluster, located in the heart of the Orion star-forming region. Already, from these first data, GRAVITY made a discovery: one of the components of the cluster (Theta1 Orionis F) was found to be a double star for the first time. The brighter double star Theta1 Orionis C is also well seen. The background image comes from the ISAAC instrument on ESO's Very Large Telescope. The views of two of the stars from GRAVITY, shown as inserts, reveal far finer detail than could be detected with the NASA/ESA Hubble Space Telescope. Image courtesy ESO/GRAVITY consortium/NASA/ESA/M. McCaughrean. For a larger version of this image please go here.

Zooming in on black holes is the main mission for the newly installed instrument GRAVITY at ESO's Very Large Telescope in Chile. During its first observations, GRAVITY successfully combined starlight using all four Auxiliary Telescopes.

The large team of European astronomers and engineers, led by the Max Planck Institute for Extraterrestrial Physics in Garching, who designed and built GRAVITY, are thrilled with the performance. During these initial tests, the instrument has already achieved a number of notable firsts. This is the most powerful VLT Interferometer instrument yet installed.

The GRAVITY instrument combines the light from multiple telescopes to form a virtual telescope up to 200 metres across, using a technique called interferometry. This enables the astronomers to detect much finer detail in astronomical objects than is possible with a single telescope.

Since the summer of 2015, an international team of astronomers and engineers led by Frank Eisenhauer has been installing the instrument in specially adapted tunnels under the Very Large Telescope at ESO's Paranal Observatory in northern Chile. This is the first stage of commissioning GRAVITY within the Very Large Telescope Interferometer (VLTI). A crucial milestone has now been reached: for the first time, the instrument successfully combined starlight from the four VLT Auxiliary Telescopes.

"During its first light, and for the first time in the history of long baseline interferometry in optical astronomy, GRAVITY could make exposures of several minutes, more than a hundred times longer than previously possible," commented Frank Eisenhauer.

"GRAVITY will open optical interferometry to observations of much fainter objects, and push the sensitivity and accuracy of high angular resolution astronomy to new limits, far beyond what is currently possible."

As part of the first observations the team looked closely at the bright, young stars known as the Trapezium Cluster , located in the heart of the Orion star-forming region. Already, from these first commissioning data, GRAVITY made a small discovery: one of the components of the cluster was found to be a double star.

The key to this success was to stabilise the virtual telescope for long enough, using the light of a reference star, so that a deep exposure on a second, much fainter object becomes feasible. Furthermore, the astronomers also succeeded in stabilising the light from four telescopes simultaneously - a feat not achieved before.

GRAVITY can measure the positions of astronomical objects on the finest scales and can also perform interferometric imaging and spectroscopy. If there were buildings on the moon, GRAVITY would be able to spot them. Such extremely high resolution imaging has many applications, but the main focus in the future will be studying the environments around black holes.

In particular, GRAVITY will probe what happens in the extremely strong gravitational field close to the event horizon of the supermassive black hole at the centre of the Milky Way - which explains the choice of the name of the instrument. This is a region where behaviour is dominated by Einstein's theory of general relativity.

In addition, it will uncover the details of mass accretion and jets - processes that occur both around newborn stars (young stellar objects) and in the regions around the supermassive black holes at the centres of other galaxies. It will also excel at probing the motions of binary stars, exoplanets and young stellar discs, and in imaging the surfaces of stars.

So far, GRAVITY has been tested with the four 1.8-metre Auxiliary Telescopes. The first observations using GRAVITY with the four 8-metre VLT Unit Telescopes are planned for later in 2016.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ESO
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Quiet quasar has apparently eaten its fill
Seattle WA (SPX) Jan 10, 2016
Astronomers with the Sloan Digital Sky Survey (SDSS) announced that a distant quasar ran out of gas. Their conclusions, reported Jan. 8 at the American Astronomical Society meeting in Kissimmee, Florida, clarify why quasar SDSS J1011+5442 changed so dramatically in the handful of years between observations. "We are used to thinking of the sky as unchanging," said University of Washington a ... read more


TIME AND SPACE
Researchers squeeze hydrogen into 'metallic state'

New wave in tech: hacking the brain

Space Protection - A Financial Primer

3D-Printed Ceramics Could be Used in Future Space Flights

TIME AND SPACE
General Dynamics MUOS-Manpack radio supports government testing of MUOS network

Raytheon to produce, test Navy Multiband Terminals

ADS to build one of two satellites for future COMSAT NG system

Thales and Airbus to supply French military satellite communications

TIME AND SPACE
SpaceX will attempt ocean landing of rocket Jan 17

Arianespace year-opening mission delivered to Final Assembly Building

SpaceX will try to land its reusable rocket on an ocean dock

Maintaining Arianespace's launch services leadership in 2016

TIME AND SPACE
GPS vultures swoop down on illegal dumps in Peru

Northrop Grumman to support U.S. Air Force GPS modernization

Europe's first decade of navigation satellites

Indra will deploy navigation aid systems in 20 Chinese airports

TIME AND SPACE
KAI, Indonesia sign deal to cooperate on KF-X fighter jet

Work underway on F-35 for Israel

U.S. Air Force KC-135 tankers surpass 100,000 combat hours

Algeria orders 12 Sukhoi Su-34 jets from Russia

TIME AND SPACE
New Chips Ease Operations In Electromagnetic Environs

New material for detecting photons captures more quantum information

New bimetallic alloy nanoparticles for printed electronic circuits

Choreographing the dance of electrons

TIME AND SPACE
Giant icebergs play key role in removing CO2 from the atmosphere

Satellites find sustainable energy in cities

NOAA's GOES-S, T and U Satellites Are Shaping Up

NASA image: Haze hovers over Indo-Gangetic Plain

TIME AND SPACE
Cost of cutting corners: US kids with lead poisoning

Tens of thousands of fish moved as Paris canal gets clean-up

Delhi court rejects challenge to car restrictions

Global mercury regulations to have major economic benefits for US









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.