Space Industry and Business News  
EARTH OBSERVATION
First detection of rain over the ocean by navigation satellites
by Staff Writers
Potsdam, Germany (SPX) Dec 21, 2018

This is a photo of TechDemoSat-1 flight ready in a cleanroom in March 2013.

In order to analyse climate change or provide information on natural hazards, for example, it is important for researchers to gather knowledge about rain. Better knowledge of precipitation and its distribution could, for example, help protect against river flooding. On land, monitoring stations can provide data by collecting precipitation. At sea, it's not so easy.

A new approach by a team around Milad Asgarimehr, who works in the GFZ section for Space Geodetic Techniques and at the Technical University of Ber-lin, together with researchers from the Earth System Research Laboratory of the National Oceanic and Atmospheric Administration of the USA (NOAA) and the University of Potsdam, uses information contained in radar signals from GNSS satellites (Global Navigation Satellite System) to detect rain over the sea.

The technology is called GNSS Reflectometry. It is an innovative satellite re-mote sensing method with a broad spectrum of geophysical applications. As-garimehr and his colleagues have now published their results in the journal Geophysical Research Letters.

According to the researchers, the new approach could help to monitor atmos-pheric precipitation better than before. Asgarimehr: "Our research can serve as a starting point for the development of an additional rain indicator. We can pro-vide precipitation information using GNSS Reflectometry with unprecedented temporal resolution and spatial coverage".

"GNSS are 'all-weather navigation systems'", explains Asgarimehr.

"A long-held basic assumption was therefore that their signals are composed in such a way that they are not noticeably attenuated by clouds or typical precipitation in the atmosphere and therefore cannot detect precipitation". The new study there-fore uses a different effect to detect rain over the sea: The roughness of the sea surface.

GNSS reflectometry can measure sea surface roughness
That surface is 'rough' mainly because winds create waves on it. The strength of the satellite signals reflected by the surface is inversely proportional to their roughness: the more and the stronger the waves, the weaker the reflected signal. Recently, researchers were able to prove that it is possible to determine the wind speed over the oceans from measurements of the roughness of its surface.

Raindrops falling on a sea surface also change its roughness. Milad Asgarimehr and the team around him asked themselves: "Can GNSS Reflectometry detect precipitation over oceans?" This is also the title of their recently published study.

If the answer is yes, GNSS Reflectometry satellites could detect rain almost like an observer watching raindrops disturb the mirror image of the moon on the surface of a lake at night. However, there is one major difference: unlike moonlight, GNSS signals are able to penetrate the clouds.

A new theoretical model comes to the rescue
During the analysis of data from the navigation satellite TDS-1 (TechDemoSat-1), Asgarimehr found evidence that rain is detectable over the oceans if the winds are not too strong. However, his research still lacked a theoretical foun-dation.

"For a long time it was thought that GNSS Reflectometry measurements should be insensitive to the small-scale surface roughness caused by raindrops on the sea surface", explains Asgarimehr. But the publication of a new theoretical model in 2017 provided a plausible estimate of the physics of the scattering of radar signals on a sea surface disturbed by weak winds.

Research paper


Related Links
GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARTH OBSERVATION
HyperScout demonstrates that satellite imagery can be processed in space
Amsterdam, Netherlands (SPX) Dec 19, 2018
HyperScout 1, the first miniaturized hyperspectral imager for space, successfully demonstrated that it is possible to process the images that are gathered by a satellite on board. By knowing the position of the satellite and in which direction it points, the instrument knows what it is looking at and can interpret the data, thus eliminating the need to download the data. The HyperScout 1 camera, launched in February on board the GOMX-4B satellite, produced the so-called Analysis Ready Data (ARD) o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Sustainable 'plastics' are on the horizon

Predicting the properties of a new class of glasses

MIT researchers develop novel 3D printing method for transparent glass

Silver nanowires promise more comfortable smart textiles

EARTH OBSERVATION
Military Santa tracker live despite US government shutdown

Satellite study proves global quantum communication will be possible

India launches military communications satellite

US Army awards Harris Corp nearly $218 million contract to provide Wideband Satellite Communications Mission support

EARTH OBSERVATION
EARTH OBSERVATION
First Lockheed Martin-Built GPS III satellite encapsulated for Dec. 18 launch

Spire Taps Galileo for Space-Based Weather Data

Lockheed Martin prepares GPS III satellite for SpaceX launch

UK will build its own satellite-navigation system after Brexit

EARTH OBSERVATION
Bulgaria to start talks with US on acquiring F-16 jets

Boeing, Sikorsky awarded $1.1B for Special Ops helicoptor support

Raytheon to provide repairs for F/A-18 infrared targeting pods

Understanding dynamic stall at high speeds

EARTH OBSERVATION
Quantum Maxwell's demon 'teleports' entropy out of a qubit

Electronics of the future: A new energy-efficient mechanism using the Rashba effect

Technique allows integration of single-crystal hybrid perovskites into electronics

Studying how unconventional metals behave, with an eye on high-temperature superconductors

EARTH OBSERVATION
ICESat-2 helps scientists measure ice thickness in the Weddell Sea

HyperScout demonstrates that satellite imagery can be processed in space

Ionosphere plasma experiments reviewed in a new Kazan University publication

Atmospheric aerosol formation from biogenic vapors is strongly affected by air pollutants

EARTH OBSERVATION
Fish bones yield new tool for tracking coal ash contamination

Anglo American restarts iron ore mine in Brazil

Lithuania wraps tree in plastic to protest Christmas consumerism

The environmental cost of packing our favorite fast-foods









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.