Space Industry and Business News  
ENERGY TECH
Finger swipe-powered phone? We're 1 step closer
by Staff Writers
East Lansing, MI (SPX) Dec 13, 2016


Michigan State University scientists have created a new way to harvest energy from human motion, using a thin, non-toxic device that can be folded to create more power. Image courtesy Michigan State University. For a larger version of this image please go here.

The day of charging cellphones with finger swipes and powering Bluetooth headsets simply by walking is now much closer. Michigan State University engineering researchers have created a new way to harvest energy from human motion, using a film-like device that actually can be folded to create more power. With the low-cost device, known as a nanogenerator, the scientists successfully operated an LCD touch screen, a bank of 20 LED lights and a flexible keyboard, all with a simple touching or pressing motion and without the aid of a battery.

The groundbreaking findings, published in the journal Nano Energy, suggest "we're on the path toward wearable devices powered by human motion," said Nelson Sepulveda, associate professor of electrical and computer engineering and lead investigator of the project.

"What I foresee, relatively soon, is the capability of not having to charge your cell phone for an entire week, for example, because that energy will be produced by your movement," said Sepulveda, whose research is funded by the National Science Foundation.

The innovative process starts with a silicone wafer, which is then fabricated with several layers, or thin sheets, of environmentally friendly substances including silver, polyimide and polypropylene ferroelectret. Ions are added so that each layer in the device contains charged particles. Electrical energy is created when the device is compressed by human motion, or mechanical energy.

The completed device is called a biocompatible ferroelectret nanogenerator, or FENG. The device is as thin as a sheet of paper and can be adapted to many applications and sizes. The device used to power the LED lights was palm-sized, for example, while the device used to power the touch screen was as small as a finger.

Advantages such as being lightweight, flexible, biocompatible, scalable, low-cost and robust could make FENG "a promising and alternative method in the field of mechanical-energy harvesting" for many autonomous electronics such as wireless headsets, cell phones and other touch-screen devices, the study says.

Remarkably, the device also becomes more powerful when folded.

"Each time you fold it you are increasing exponentially the amount of voltage you are creating," Sepulveda said. "You can start with a large device, but when you fold it once, and again, and again, it's now much smaller and has more energy. Now it may be small enough to put in a specially made heel of your shoe so it creates power each time your heel strikes the ground."

Sepulveda and his team are developing technology that would transmit the power generated from the heel strike to, say, a wireless headset.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Michigan State University
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
The promise of greener power generation
Thuwal, Saudi Arabia (SPX) Dec 07, 2016
Modeling the combustion of fossil fuels by KAUST researchers has helped to characterize some of the components of methane, laying the foundations for greener power generation1. In energy production, incomplete combustion of fossil fuels, like natural gas, causes the release of air pollutants, such as soot, carbon monoxide, and nitrogen oxides, which are harmful to our health and the enviro ... read more


ENERGY TECH
Decoding cement's shape promises greener concrete

Shape matters when light meets atom

NASA awards contract for refueling mission spacecraft

Earth's 'technosphere' now weighs 30 trillion tons

ENERGY TECH
Japan to Launch First Military Communications Satellite on January 24

Intelsat General to provide satellite services to RiteNet for US Army network

NSA gives Type1 certification to Harris radio

Upgraded telecommunications network for Marines

ENERGY TECH
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

ENERGY TECH
OGC requests public comment on its Coverage Implementation Schema

Lockheed Martin Advances Modernization of Current GPS Ground Control System for USAF

High-Precision System for Real-Time Navigation Data of GLONASS Ready for Service

Launch of new Galileo navigation quartet

ENERGY TECH
One ship left in MH370 underwater search

Pentagon defends new Air Force One after Trump slam

State Dept. approves F/A-18 midlife upgrade for Finland

Lockheed Martin to provide spares for Saudi F-15s

ENERGY TECH
Electron highway inside crystal

Physicists decipher electronic properties of materials in work that may change transistors

Improving the resolution of lithography

Construction of practical quantum computers radically simplified

ENERGY TECH
Bacterial mechanism converts nitrogen to greenhouse gas

Vega lofts Turkey's Earth observation satellite

DigitalGlobe releases first high-resolution image from WorldView-4 satellite

Illinois researchers discover hot hydrogen atoms in Earth's upper atmosphere

ENERGY TECH
Unruly drivers undermine Paris pollution ban

Paris chokes under worst winter pollution in decade

Paradise lost: How toxic water destroyed Pakistan's largest lake

New grasses neutralize toxic pollution from bombs, explosives, and munitions









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.