Space Industry and Business News  
TECH SPACE
Fastest high-precision 3D printer
by Staff Writers
Karlsruhe, Germany (SPX) Feb 07, 2020

The metamaterial printed with the new system consists of a complex three-dimensional lattice structure on the micrometer scale.

3D printers working in the millimeter range and larger are increasingly used in industrial production processes. Many applications, however, require precise printing on the micrometer scale at a far higher speed.

Researchers of Karlsruhe Institute of Technology (KIT) have now developed a system to print highly precise, centimeter-sized objects with submicrometer details at a so far unmatched speed. This system is presented in a special issue of Advanced Functional Materials (DOI: 10.1002/adfm.201907795).

To demonstrate not only the speed, but also the reliability of their setup, the researchers have printed a lattice structure of 60 cubic millimeters in size with details down to the micrometer scale. It contains more than 300 billion voxels (a voxel is the 3D counterpart of a pixel or 2D picture element).

"We have by far outperformed the record reached by 3D-printed aircraft wings. This is a new world record," says Professor Martin Wegener, Spokesperson of the Cluster of Excellence "3D Matter Made to Order" (3DMM2O), within which the system was developed.

For this type of 3D printing, the beam of a laser passes a liquid photoresist in a computer-controlled manner. The material located in the focus of the laser only is exposed and hardened.

"The focal points correspond to the nozzles of an inkjet printer, the only difference being that they work three-dimensionally," Vincent Hahn, first author of the publication, says. In this way, highly precise filigree structures can be produced for various applications, such as optics and photonics, material sciences, bioengineering, or safety engineering. Typically, several hundred thousands of voxels per second have been produced with a single laser light spot so far.

This means that it was nearly a hundred times slower than graphical inkjet printers, which impeded many applications so far. Scientists of KIT and Queensland University of Technology (QUT) in Brisbane/Australia have now developed a new system within the 3DMM2O Cluster of Excellence.

Using special optics, the laser beam is divided into nine partial beams that focus on a focal point each. All nine partial beams can be used in parallel and, thanks to improved electronic control, they can be moved precisely much more rapidly than ever.

This and some other technical improvements made the researchers reach 3D printing speeds of about 10 million voxels per second, which corresponds to the speed reached by graphical 2D inkjet printers. KIT will continue research and development work in this area.

"After all, 3D printers will be used to print not just one page, but thick volumes," Hahn says. This will also require progress in chemistry. For example, more sensitive photoresists are needed to generate more focal points at the same laser output.

Research Report: "Rapid assembly of small materials building blocks (voxels) into large functional 3D metamaterials"


Related Links
Karlsruher Institute For Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
"Breakthrough" 3D-printed rocket engine tests completed in Fife, Scotland
Edinburgh UK (SPX) Feb 04, 2020
The first ever eco liquid-fuel rocket engine ground tests to take place in Scotland have been deemed a huge success - and a major step forward in the UK's ambitions to become a space nation. Edinburgh-based satellite launch firm Skyrora has completed a week of static horizontal firings conducted in Fife to compare the behaviour of kerosene and eco-fuel. The test firings allowed Skyrora to assess its innovative 3D-printed 3.5kN LEO engine, which will be used to power the final upper stage of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
New threads: Nanowires made of tellurium and nanotubes hold promise for wearable tech

Fastest high-precision 3D printer

AFRL, partners develop innovative tools to accelerate composites certification

Researchers report progress on molecular data storage system

TECH SPACE
US Army and Air Force team up for multi-domain operations

NASA's Laser Communications Relay Demonstration Mission Leaves Goddard Space Flight Center

Protecting wideband RF systems in congested electromagnetic environments

General Dynamics receives $730M for next-gen satcom system

TECH SPACE
TECH SPACE
Space Force decommissions 26-year-old GPS satellite to make way for GPS 3 constellation

Using artificial intelligence to enrich digital maps

Galileo now replying to SOS messages worldwide

China's international journal Satellite Navigation launched

TECH SPACE
Virgin Australia axes flights to crisis-hit Hong Kong

UK regulator bans Ryanair's 'misleading' green adverts

Boeing receives $18.2M deal for MH-47G Chinook parts for Special Ops

Cathay Pacific asks all staff to take unpaid leave; US airlines suspend Hong Kong flights

TECH SPACE
T-MUSIC selects performers to develop integrated mixed-mode RF electronics in onshore foundries

Rare-earth element material could produce world's smallest transistors

DNA-like material could bring even smaller transistors

Engineers mix and match materials to make new stretchy electronics

TECH SPACE
ECOSTRESS mission sees plants 'waking up' from space

Deep learning accurately forecasts heat waves, cold spells

January 2020 warmest on record: EU climate service

The fingerprints of paddy rice in atmospheric methane concentration dynamics

TECH SPACE
UD study maps areas of high Microplastic concentrations in the Delaware Bay

Mark Ruffalo urges EU 'heroism' in chemical pollution fight

'Open bar' for rats as Paris pension strikes hit waste collection

Uruguayan project uses virtual money to encourage plastic recycling









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.