Subscribe free to our newsletters via your
. Space Industry and Business News .




CARBON WORLDS
Fast-sinking jellyfish could boost the oceans' uptake of carbon dioxide
by Staff Writers
Munich, Germany (SPX) May 29, 2013


Accumulation of pelagic jellies. New experiments indicates that fast-sinking jellyfish could boost the oceans' uptake of carbon dioxide. Photo: Veronica Fuentes.

The oceans absorb about 25 percent of the carbon dioxide (CO2) emitted by human activities. Since the industrial revolution, they have taken up about half of the man-made CO2.

Billions of planktonic organisms, too tiny to be seen with the naked eye, make this valuable service possible: When carbon dioxide from the atmosphere dissolves in seawater, various species convert it to organic carbon and other organic components during photosynthesis. Jellyfish and pelagic tunicates live on smaller plankton and thus consume organic carbon.

When they sink to the seafloor at the end of their life cycles, they take the carbon from the surface waters with them, provide it as food to organisms at the bottom or store it in deep water layers after decomposition.

As a result, more CO2 can be dissolved in the oceans. Additionally, calcifying organisms incorporate the inorganic carbon in their calcium carbonate shells directly. They also contribute to the biological pump.

To assess the efficiency of the biological carbon pump, data on sinking velocities of the different species are necessary. Together with colleagues from Germany, Spain, the United Kingdom and the United States, Dr. Mario Lebrato, Biological Oceanographer in Prof. Andreas Oschlies' group at GEOMAR Helmholtz Centre for Ocean Research Kiel, conducted field and laboratory experiments with gelatinous plankton remains.

Their latest article in the international magazine "Limnology and Oceanography" describes for the first time the sinking speed of organic remains from jellyfish and pelagic tunicates.

Together with a previous article in the same journal that calculated biomass export efficiency for these organisms for the first time, these new data allow robust estimates of global carbon export associated with gelatinous plankton.

For their experiments, the scientists collected different species of scyphozoans (true jellyfish), ctenophores (comb jellies), and thaliaceans (salps) in the Baltic, the Mediterranean, the Atlantic and the Southern Ocean. The sinking process was observed and filmed in large transparent cylinders filled with seawater at OceanLab Bremen by Dr. Pedro de Jesus Mendes.

Later the proportion of organic carbon and nitrogen of the dry biomass and biomass weight were measured. The work was supported by the European Project on Ocean Acidification (EPOCA), the Kiel Cluster of Excellence The Future Ocean, the German project on ocean acidification BIOACID (Biological Impacts of Ocean Acidification), and the US National Science Foundation Office for Polar Programs.

"The sinking speed of jelly remains is much, much higher than what we expected, about 500 to 1600 meters per day", Lebrato sums up. "And, what puzzles researchers working on the biological carbon pump: it is higher than that of non-calcifying phytoplankton and marine snow, the main sinking particles and organic carbon sources to the ocean interior".

Fast sinking means that the biomass and its constituents reach the deeper ocean layers without major degradation, where microbial decay releases CO2 that can be stored without direct contact with the atmosphere for millennia.

Also, fast sinking provides high quality food resources for benthic organisms, which has already been observed actively feeding on jelly remains. On continental shelves and slope areas, biomass may reach the seabed within a day or less.

Within the studied species, scyphozoans had on average the highest carbon content (26.97 percent), followed by thaliaceans (17.20 percent), and ctenophores (1.40 percent). The jelly carbon content is lower on average than that of phytoplankton or marine snow. But their large populations, occupying at times hundreds of square kilometers in the oceans, combined with a high sinking speed, can deliver large carbon quantities to the seabed.

"Our dataset provides an initial overview and comparison for modelers and experimentalists to use in subsequent studies examining the role of jellies in carbon export and the efficiency of the biological pump", Lebrato says.

"We are continuously asked, how much organic carbon and CO2 do gelatinous plankton sink worldwide, whether their export capacities are similar to phytoplankton and marine snow. And if an increase of jellyfish in the future will enhance organic carbon export and CO2 sequestration.

Until recently, few people believed that jelly organisms could play any major role in the carbon cycle, thus they have been excluded from large biogeochemical research programs.

In consequence, the data available up to now are scarce and we are just starting to comprehend the fundamental properties that will allow us to better understand the role of jellyfish and pelagic tunicates in the global carbon cycle."

.


Related Links
Helmholtz Centre for Ocean Research Kiel (GEOMAR)
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
CO2 sequestration process produces supergreen hydrogen fuel, offsets ocean acidification
Livermore CA (SPX) May 29, 2013
Lawrence Livermore scientists have discovered and demonstrated a new technique to remove and store atmospheric carbon dioxide while generating carbon-negative hydrogen and producing alkalinity, which can be used to offset ocean acidification. The team demonstrated, at a laboratory scale, a system that uses the acidity normally produced in saline water electrolysis to accelerate silicate mi ... read more


CARBON WORLDS
Helicopter-light-beams - a new tool for quantum optics

Just how secure is quantum cryptography

One Year Anniversary of KOMPSAT-3 Launch

Crystal-clear method for distinguishing between glass and fluids

CARBON WORLDS
Mutualink Platform to be Deployed by US DoD during JUICE 2013

General Dynamics to Deliver U.S. Army's Newest Tactical Ground Station Intelligence System

Boeing-built WGS-5 Satellite Enhances Tactical Communications for Warfighters

US Navy And Lockheed Martin Deliver Secure Communications Satellite For Mobile Users

CARBON WORLDS
First Light Angara Rocket Ready for Launch

Russia to launch 12 Proton-M rockets in 2013

Russian Spacecraft Manufacturer to Make Four Launches in 2014

Electric Propulsion

CARBON WORLDS
GPS solution provides three-minute tsunami alerts

Northrop Grumman Delivers 8,000th LN-100 Inertial Navigation System

NASA Builds Unusual Testbed for Analyzing X-ray Navigation Technologies

Pakistan adopts Chinese rival GPS satellite system

CARBON WORLDS
Slow progress on Unasur plans for a joint trainer aircraf

EADS sweetens KF-X offering

NASA's BARREL Mission Launches 20 Balloons

US F-15 crashes in Japan, pilot ejects safely

CARBON WORLDS
Milwaukee-York researchers forward quest for quantum computing

New Technique May Open Up an Era of Atomic-scale Semiconductor Devices

Bright Future For Photonic Quantum Computers

New magnetic graphene may revolutionize electronics

CARBON WORLDS
NASA Ships Sensors for Seafaring Satellite to France

NASA's Landsat Satellite Looks for a Cloud-Free View

Google team captures Galapagos Island beauty for maps

NASA Helps Pinpoint Glaciers' Role in Sea Level Rise

CARBON WORLDS
Fresh oil spill from Turkish tanker off Cape Town

Poland dumps old garbage system for greener setup

Wal-Mart fined $110 mn over hazardous waste

Frog once imported for pregnancy testing brought deadly amphibian disease to US




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement