Space Industry and Business News
ICE WORLD
Explaining dramatic planetwide changes after world's last 'Snowball Earth' event
illustration only
Explaining dramatic planetwide changes after world's last 'Snowball Earth' event
by Hannah Hickey for UW News
Seattle, WA (SPX) Sep 19, 2024

Some of the most dramatic climatic events in our planet's history are "Snowball Earth" events that happened hundreds of millions of years ago, when almost the entire planet was encased in ice up to 0.6 miles (1 kilometer) thick.

These "Snowball Earth" events have happened only a handful of times and do not occur on regular cycles. Each lasts for millions of years or tens of millions of years and is followed by dramatic warming, but the details of these transitions are poorly understood.

New research from the University of Washington provides a more complete picture for how the last Snowball Earth ended, and suggests why it preceded a dramatic expansion of life on Earth, including the emergence of the first animals.

The study recently published in Nature Communications focuses on ancient rocks known as "cap carbonates," thought to have formed as the glacial ice thawed. These rocks preserve clues to Earth's atmosphere and oceans about 640 million years ago, far earlier than what ice cores or tree rings can record.

"Cap carbonates contain information about key properties of Earth's atmosphere and ocean, such as changing levels of carbon dioxide in the air, or the acidity of the ocean," said lead author Trent Thomas, a UW doctoral student in Earth and space sciences. "Our theory now shows how these properties changed during and after Snowball Earth."

Cap carbonates are layered limestone or dolomite rocks that have a distinct chemical makeup and today are found in over 50 global locations, including Death Valley, Namibia, Siberia, Ireland and Australia. These rocks are thought to have formed as the Earth-encircling ice sheets melted, causing dramatic changes in atmospheric and ocean chemistry and depositing this unique type of sediment onto the ocean floor.

They are called "caps" because they are the caps above glacial deposits left after Snowball Earth, and "carbonates" because both limestone and dolomite are carbon-containing rocks. Understanding their formation helps explain the carbon cycle during periods of dramatic climate change. The new study, which models the environmental changes, also provides hints about the evolution of life on Earth and why more complex lifeforms followed the last Snowball Earth.

"Life on Earth was simple - in the form of microbes, algae or other tiny aquatic organisms - for over 2 billion years leading up to Snowball Earth," said senior author David Catling, a UW professor of Earth and space sciences. "In fact, the billion years leading up to Snowball Earth are called the 'boring billion' because so little happened. Then two Snowball Earth events occurred. And soon after, animals appear in the fossil record."

The new paper provides a framework for how the last two facts may be connected.

The study modeled chemistry and geology during three phases of Snowball Earth. First, during Snowball Earth's peak, thick ice encircling the planet reflected sunlight, but some areas of open water allowed exchange between the ocean and atmosphere. Meanwhile frigid seawater continued to react with the ocean floor.

Eventually, carbon dioxide built up in the atmosphere to the point where it trapped enough solar energy to raise global temperatures and melt the ice. This let rainfall reach the Earth, and let freshwater flow into the ocean to join a layer of glacial meltwater that floated over the denser, salty ocean water. This layered ocean slowed down ocean circulation. Later, ocean churning picked up, and mixing between the atmosphere, upper ocean, and deep ocean resumed.

"We predict important changes in the environment as Earth recovered from the Snowball period, some of which affected the temperature, acidity and circulation of the ocean. Now that we know these changes, we can more confidently figure out how they affected Earth's life," Thomas said.

Future research will explore how pockets of life that may have survived the tumult of the Snowball Earth and its aftermath could have evolved into the more complex lifeforms that followed soon after.

The research was funded by the National Science Foundation and NASA, in part by a NASA Astrobiology Program grant to the UW's Virtual Planetary Laboratory.

Research Report:Three-stage formation of cap carbonates after Marinoan snowball glaciation consistent with depositional timescales and geochemistry

Related Links
University of Washington
Beyond the Ice Age

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ICE WORLD
'Disappeared completely': melting glaciers worry Central Asia
Adygene Glacier (AFP) Sept 16, 2024
Near a wooden hut high up in the Kyrgyz mountains, scientist Gulbara Omorova walked to a pile of grey rocks, reminiscing how the same spot was a glacier just a few years ago. At an altitude of 4,000 metres, the 35-year-old researcher is surrounded by the giant peaks of the towering Tian Shan range that also stretches into China, Kazakhstan and Uzbekistan. The area is home to thousands of glaciers that are melting at an alarming rate in Central Asia, already hard-hit by climate change. A gl ... read more

ICE WORLD
Advanced instrument offers new insights into Van Allen Radiation Belts

Orion spacecraft radiation protection tested

The Best Practices to Minimize Exposure to Welding Fumes

Algorithm from Mars Rover assists data analysis for Earth Sciences

ICE WORLD
Astranis secures cxontract to add military Ka band to Omega satellites

NATO contracts SES for secure satellite communications via O3b mPOWER

Boeing advances quantum communications with 2026 space test satellite

OneWeb Technologies introduces advanced packaged PNT Solution

ICE WORLD
ICE WORLD
China launches two more satellites for Beidou navigation system

SpaceX launches European Galileo satellites to medium Earth orbit

OneWeb Technologies unveils Astra PNT Solution for GPS-Denied Environments

Mathematical Proof Confirms Five Satellites Required for Precise GPS Navigation

ICE WORLD
How to Choose the Right Airplane Pilot Course for You

Rolls-Royce engine defect a new blow for historic firm

Sceye secures Series C funding led by Mawarid Holding Company

Hong Kong probe finds Cathay Airbus defect could cause 'extensive' damage

ICE WORLD
EU court trims Qualcomm fine to 238.7 mn euros

A smoother way to study 'twistronics'

Germany's Scholz disappointed by delay to Intel chip plant

Unveiling new spin properties in artificial materials

ICE WORLD
Sentinel-2C completes critical early orbit phase, begins commissioning

NOAA extends Mesonet Partnership with Climavision for Enhanced Radar Data

Satellite navigation systems enable precise global soil moisture monitoring

Holistic approach to understanding Earth System science

ICE WORLD
Fuel slick from sunk ship spreads to Greenland fjord

Environmental protesters block French cruise liner port

Scientists call for unified global action on microplastics

Ship with 20,000 litres of diesel fuel sinks off Greenland

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.