Space Industry and Business News  
OIL AND GAS
Etching the road to a hydrogen economy using plasma jets
by Staff Writers
Tokyo, Japan (SPX) Jun 04, 2020

stock iamge only

The ever-worsening global environmental crisis, coupled with the depletion of fossil fuels, has motivated scientists to look for clean energy sources. Hydrogen (H2) can serve as an eco-friendly fuel, and hydrogen generation has become a hot research topic. While no one has yet found an energy-efficient and affordable way to produce hydrogen on a large scale, progress in this field is steady and various techniques have been proposed.

One such technique involves using light and catalysts (materials that speed up reactions) to split water (H2O) into hydrogen and oxygen. The catalysts have crystalline structures and the ability to separate charges at the interfaces between some of their sides. When light hits the crystal at certain angles, the energy from the light is absorbed into the crystal, causing certain electrons to become free from their original orbits around atoms in the material. As an electron leaves its original place in the crystal, a positively charged vacancy, known as a hole, is created in the structure. Generally, these "excited" states do not last long, and free electrons and holes eventually recombine.

This is the case with bismuth vanadate (BiVO4) crystal catalysts as well. BiVO4 has been recently explored for water-splitting reactions, given its promise as a material in which charge-separation can occur upon excitation with visible light. The quick recombination of pairs of charged entities ("carriers") is a disadvantage because carriers must separately partake in reactions that break up water.

In a recent study published in Chemical Engineering Journal, scientists from the Photocatalysis International Research Center at Tokyo University of Science, Japan, together with scientists from Northeast Normal University in China, developed a novel method to improve the charge-separation characteristics of decahedral (ten-sided) BiVO4 crystal catalysts.

Prof Terashima, lead scientist in the study, explains, "Recent studies have shown that carriers can be generated and separated at the interfaces between the different faces of certain crystals. In the case of BiVO4, however, the forces that separate carriers are too weak for electron-hole pairs that are generated slightly away from the interfaces. Therefore, carrier separation in BiVO4 decahedrons called for further improvements, which motivated us to carry out this study."

In the technique they propose, BiVO4 nanocrystals are exposed to what is called "solution plasma discharge", a highly charged jet of energetic matter that is produced by applying high voltages between two terminals submerged in water. The plasma discharge removes some vanadium (V) atoms from the surface of specific faces of the crystals, leaving vanadium vacancies.

These vacancies act as "electron traps" that facilitate the increased separation of carriers. Because these vacancies are in greater number on the eight side faces of the decahedron, electrons are trapped on these faces while holes accumulate on the top and bottom faces. This increased charge separation results in better catalytic performance of the BiVO4 nanocrystals, thereby improving its water splitting performance.

This study represents a novel use of solution plasma discharge to enhance the properties of crystals. Prof Akira Fujishima, co-author of the paper, says, "Our work has inspired us to reconsider other crystals that are apparently ineffective for water splitting. It provides a promising strategy using solution plasma to 'activate' them."

The use of solution-plasma discharge has many advantages over using conventional gaseous plasma that make it far more attractive from both technical and economic standpoints. Prof Xintong Zhang from Northeast Normal University, China, remarks, "Unlike gaseous plasma, which has to be generated in closed chambers, solution plasma can be generated in an open reactor at room temperature and in a normal air atmosphere. In addition, by working with crystal powders in a solution, it becomes more convenient to change the parameters of the process, and it is also easier to scale up."

This study hopefully takes us one step closer to an efficient way of producing hydrogen so that we can finally do without fossil fuels and other energy sources that are harmful to our planet. Further commenting on the promise of this study, Prof Terashima says, "If efficient hydrogen energy can be produced using sunlight and water, two of the most abundant resources on earth, a dream clean society could be realized."

Research Report: "Solution plasma boosts facet-dependent photoactivity of decahedral BiVO4"


Related Links
Tokyo University Of Science
All About Oil and Gas News at OilGasDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


OIL AND GAS
Detecting methane emissions during COVID-19
Paris (ESA) Jun 02, 2020
While carbon dioxide is more abundant in the atmosphere and therefore more commonly associated with global warming, methane is around 30 times more potent as a heat-trapping gas. Given its importance, Canadian company GHGSat have worked in collaboration with the Sentinel-5P team at SRON Netherlands Institute for Space Research to investigate hotspots of methane emissions during COVID-19. Carbon dioxide is generally produced by the combustion of fossil fuels, while fossil ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OIL AND GAS
CSIRO uncovers innovative approach to gold exploration

Kyoto scientists announce a 'nuclear' periodic table

Controlling artificial cilia with magnetic fields and light

UK commits new funding to combat space debris

OIL AND GAS
UK nears final stage of Skynet satellite contract competition

Roccor creates Helical L-Band Antenna for first-ever space demonstration of Link 16 Networks

NIST researchers boost microwave signal stability a hundredfold

IBCS Goes Agile

OIL AND GAS
OIL AND GAS
Out-of-the-box spoofing mitigation with Galileo's OS-NMA service

Harnessing space to save lives at sea

Galileo in high latitudes and harsh environments

New BeiDou satellite starts operation in network

OIL AND GAS
AFRL, AFSOC launch palletized weapons from cargo plane

U.S. Air Force scales back fitness testing, citing COVID-19 concerns

Russia begins building first stealth bomber

Hong Kong airport to resume limited transit services

OIL AND GAS
Xilinx 'lifts off' with launch of industry's first 20nm space-grade FPGA for space applications

'One-way' electronic devices enter the mainstream

Huawei says 'survival' at stake after US chip restrictions

Scientists break the link between a quantum material's spin and orbital states

OIL AND GAS
NASA's AIM Spots First Arctic Noctilucent Clouds of the Season

Volcanic eruptions reduce global rainfall

Calling for ideas for next Earth Explorer

ESA's oldest Earth-observer images Delhi airport

OIL AND GAS
Bulgarian minister charged over illegal waste imports from Italy

Gold mining with mercury threatens health of communities miles downstream

Copenhagen under fire over massive sewage dump

Amazon shareholders reject dissident moves to reshape company









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.