Space Industry and Business News  
CHIP TECH
Engineers tap DNA to create 'lifelike' machines
by Staff Writers
Ithaca NY (SPX) Apr 15, 2019

illustration only

Tapping into the unique nature of DNA, Cornell engineers have created simple machines constructed of biomaterials with properties of living things.

Using what they call DASH (DNA-based Assembly and Synthesis of Hierarchical) materials, engineers constructed a DNA material with capabilities of metabolism, in addition to self-assembly and organization - three key traits of life.

"We are introducing a brand-new, lifelike material concept powered by its very own artificial metabolism. We are not making something that's alive, but we are creating materials that are much more lifelike than have ever been seen before," said Dan Luo, professor of biological and environmental engineering.

The paper published in Science Robotics.

For any living organism to maintain itself, there must be a system to manage change. New cells must be generated; old cells and waste must be swept away. Biosynthesis and biodegradation are key elements of self-sustainability and require metabolism to maintain its form and functions.

Through this system, DNA molecules are synthesized and assembled into patterns in a hierarchical way, resulting in something that can perpetuate a dynamic, autonomous process of growth and decay.

Using DASH, the Cornell engineers created a biomaterial that can autonomously emerge from its nanoscale building blocks and arrange itself - first into polymers and eventually mesoscale shapes. Starting from a 55-nucleotide base seed sequence, the DNA molecules were multiplied hundreds of thousands times, creating chains of repeating DNA a few millimeters in size. The reaction solution was then injected in a microfluidic device that provided a liquid flow of energy and the necessary building blocks for biosynthesis.

As the flow washed over the material, the DNA synthesized its own new strands, with the front end of the material growing and the tail end degrading in optimized balance. In this way, it made its own locomotion, creeping forward, against the flow, in a way similar to how slime molds move.

The locomotive ability allowed the researchers to pit sets of the material against one another in competitive races. Due to randomness in the environment, one body would eventually gain an advantage over the other, allowing one to cross a finish line first.

"The designs are still primitive, but they showed a new route to create dynamic machines from biomolecules. We are at a first step of building lifelike robots by artificial metabolism," said Shogo Hamada, lecturer and research associate in the Luo lab, and lead and co-corresponding author of the paper. "Even from a simple design, we were able to create sophisticated behaviors like racing. Artificial metabolism could open a new frontier in robotics."

Research paper


Related Links
Cornell University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Measurement of semiconductor material quality is now 100,000 times more sensitive
Austin TX (SPX) Apr 10, 2019
The enhanced power of the new measuring technique to characterize materials at scales much smaller than any current technologies will accelerate the discovery and investigation of 2D, micro- and nanoscale materials. Being able to accurately measure semiconductor properties of materials in small volumes helps engineers determine the range of applications for which these materials may be suitable in the future, particularly as the size of electronic and optical devices continues to shrink. Dan ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA awards contract to Auburn University's National Center for Additive Manufacturing Excellence

China's virtual reality arcades aim for real-world success

Maxar and NASA complete Design Review for Restore-L On-Orbit Servicing Spacecraft Bus

Russia's new ISS modules will be shielded with fabrics used in body armour

CHIP TECH
US Army selects Hughes for cooperative effort to upgrades NextGen Friendly Forces System

United Launch Alliance launches WGS-10 satellite for USAF

United Launch Alliance set to launch WGS-10 for US Air Force

Raytheon awarded $406M for Army aircraft radio system

CHIP TECH
CHIP TECH
Record-Breaking Satellite Advances NASA's Exploration of High-Altitude GPS

China, Arab states eye closer cooperation on satellite navigation to build "Space Silk Road"

Second GPS III satellite arrives at Cape Canaveral ahead of July launch

GPS 3 space vehicle 02 "Magellan" arrives in Florida; prepares for July launch

CHIP TECH
OSM Aviation Academy places order for 60 all-electric planes

Sierra Nevada awarded $42.7M to train Afghan Air Force on A-29 Super Tucano

Wreckage of missing Japan fighter jet found, pilot missing

In hidden mountain air base, Albania stores MiGs for sale

CHIP TECH
DARPA Announces Second Annual ERI Summit

Measurement of semiconductor material quality is now 100,000 times more sensitive

Copper-based alternative for next-generation electronics

New methodology enable solid state lighting to measure and self-adjust based on conditions

CHIP TECH
Natural climate processes overshadow recent human-induced Walker circulation trends

Researchers unveil effects of dust particles on cloud properties

Experts reveal that clouds have moderated warming triggered by climate change

Free satellite data available to help tackle public sector challenges

CHIP TECH
Hong Kong admits world's largest air purifier choked on debut

Children in South Asia hardest hit by air pollution, says study

Asia's pollution exodus: Firms struggle to woo top talent

Residents split on future of Romania's trash heap 'time-bomb'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.