Subscribe free to our newsletters via your
. Space Industry and Business News .




INTERN DAILY
Engineered microvessels provide a 3D test bed for human diseases
by Staff Writers
Seattle WA (SPX) May 29, 2012


The engineered microvessels can form bends and T-junctions. The blue dots are the nuclei of the endothelial cells in the vessel walls, and the cell junctions are red. When smooth muscle cells (green) are introduced, they wrap and tighten around the vessels like they do in the human body. Credit: Y. Zheng, U. of Washington.

Mice and monkeys don't develop diseases in the same way that humans do. Nevertheless, after medical researchers have studied human cells in a Petri dish, they have little choice but to move on to study mice and primates. University of Washington bioengineers have developed the first structure to grow small human blood vessels, creating a 3-D test bed that offers a better way to study disease, test drugs and perhaps someday grow human tissues for transplant.

The findings are published in the Proceedings of the National Academy of Sciences.

"In clinical research you just draw a blood sample," said first author Ying Zheng, a UW research assistant professor of bioengineering. "But with this, we can really dissect what happens at the interface between the blood and the tissue. We can start to look at how these diseases start to progress and develop efficient therapies."

Zheng first built the structure out of the body's most abundant protein, collagen, while working as a postdoctoral researcher at Cornell University. She created tiny channels and injected this honeycomb with human endothelial cells, which line human blood vessels.

During a period of two weeks, the endothelial cells grew throughout the structure and formed tubes through the mold's rectangular channels, just as they do in the human body.

similar system could supply blood to engineered tissue before transplant into the body.

After joining the UW last year, Zheng collaborated with the Puget Sound Blood Center to see how this research platform would work to transport real blood.

The engineered vessels could transport human blood smoothly, even around corners. And when treated with an inflammatory compound the vessels developed clots, similar to what real vessels do when they become inflamed.

The system also shows promise as a model for tumor progression. Cancer begins as a hard tumor but secretes chemicals that cause nearby vessels to bulge and then sprout. Eventually tumor cells use these blood vessels to penetrate the bloodstream and colonize new parts of the body.

When the researchers added to their system a signaling protein for vessel growth that's overabundant in cancer and other diseases, new blood vessels sprouted from the originals. These new vessels were leaky, just as they are in human cancers.

"With this system we can dissect out each component or we can put them together to look at a complex problem. That's a nice thing-we can isolate the biophysical, biochemical or cellular components. How do endothelial cells respond to blood flow or to different chemicals, how do the endothelial cells interact with their surroundings, and how do these interactions affect the vessels' barrier function? We have a lot of degrees of freedom," Zheng said.

The system could also be used to study malaria, which becomes fatal when diseased blood cells stick to the vessel walls and block small openings, cutting off blood supply to the brain, placenta or other vital organs.

"I think this is a tremendous system for studying how blood clots form on vessels walls, how the vessel responds to shear stress and other mechanical and chemical factors, and for studying the many diseases that affect small blood vessels," said co-author Dr. Jose Lopez, a professor of biochemistry and hematology at UW Medicine and chief scientific officer at the Puget Sound Blood Center.

Future work will use the system to further explore blood vessel interactions that involve inflammation and clotting. Zheng is also pursuing tissue engineering as a member of the UW's Center for Cardiovascular Biology and the Institute for Stem Cell and Regenerative Medicine.

Other co-authors are UW physics senior Samuel Totorica; Abraham Stroock, Michael Craven, Nak Won Choi, Michael Craven, Anthony Diaz-Santana and Claudia Fischbach at Cornell; Junmei Chen at the Puget Sound Blood Center; and Barbara Hempstead at Weill Cornell Medical College.

.


Related Links
University of Washington
Hospital and Medical News at InternDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








INTERN DAILY
Earlier detection of bone loss may be in future
Tempe AZ (SPX) May 29, 2012
Are your bones getting stronger or weaker? Right now, it's hard to know. Scientists at Arizona State University and NASA are taking on this medical challenge by developing and applying a technique that originated in the Earth sciences. In a new study, this technique was more sensitive in detecting bone loss than the X-ray method used today, with less risk to patients. Eventually, it may fi ... read more


INTERN DAILY
Mystifying materials

Just How Green is Google

'Metamaterials,' quantum dots show promise for new technologies

Thousands of invisibility cloaks trap a rainbow

INTERN DAILY
Researchers Improve Fast-Moving Mobile Networks

Second AEHF Military Communications Satellite Launched

Fourth Boeing-built WGS Satellite Accepted by USAF

Raytheon to Continue Supporting Coalition Forces' Information-Sharing Computer Network

INTERN DAILY
SpaceX capsule has 'new car' smell, astronauts say

SpaceX makes final approach to space station

SpaceX's Dragon makes historic space station dock

SpaceX Launches NASA Demonstration Mission to ISS

INTERN DAILY
Spirent Launches New Entry-Level Multi-GNSS Simulator

Beidou navigation system installed on more Chinese fishing boats

Scientists design indoor navigation system for blind

Chinese navigation system to cover Asia-Pacific this year

INTERN DAILY
EADS head says helicopter cracks not comparable to A380 woes

India may bar Europe carriers in climate tax row

Boeing to Modernize Flight Deck and Avionics for US and NATO AWACS Fleets

Northrop Grumman's Joint STARS Completes Flight Testing of JT-8D Engines

INTERN DAILY
Japan's Renesas ups chip outsourcing to Taiwan giant

New silicon memory chip developed

Return of the vacuum tube

Performance boost for microchips

INTERN DAILY
Nea Kameni volcano movement captured by Envisat

My American Landscape Contest: A Space Chronicle of Change

City's population is counted from space

Unparalleled Views of Earth's Coast With HREP-HICO

INTERN DAILY
Fears as Latin America's largest trash dump closes

Ship's captain jailed over New Zealand oil spill

Germany, India in talks over treating Bhopal waste

Italy ditches plan for rubbish dump near Hadrian's villa




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement