Space Industry and Business News
SPACE MEDICINE
Engineered compound shows promise in preventing bone loss in space
illustration only
Engineered compound shows promise in preventing bone loss in space
by Staff Writers
Los Angeles CA (SPX) Sep 19, 2023

A new study published in a Nature Partner Journal, npj Microgravity, finds an engineered compound given to mice aboard the International Space Station (ISS) largely prevented the bone loss associated with time spent in space. The study, led by a transdisciplinary team of professors at the University of California at Los Angeles (UCLA) and the Forsyth Institute in Cambridge, Massachusetts, highlight a promising therapy to mitigate extreme bone loss from long-duration space travel as well as musculoskeletal degeneration on Earth.

Microgravity-induced bone loss has long been a critical concern for long-term space missions. Decreased mechanical loading due to microgravity induces bone loss at a rate 12-times greater than on Earth. Astronauts in low Earth orbit may experience bone loss up to 1% per month, endangering astronaut skeletal health and increasing risk for fractures during long-duration spaceflight and later in life.

The current mitigation strategy for bone loss relies on exercise-induced mechanical loading to promote bone formation but is far from perfect for crewmembers spending up to six months in microgravity. Exercise does not always prevent bone loss, takes up valuable crew time, and may be contraindicated for certain types of injuries.

The new study led by Chia Soo, MD, vice chair for research in the Division of Plastic and Reconstructive Surgery, professor in Departments of Surgery and Orthopaedic Surgery at UCLA David Geffen School of Medicine, investigated whether systemic delivery of NELL-like molecule-1 (NELL-1) can reduce microgravity induced bone loss. Discovered by Kang Ting, DMD, DMSc at the Forsyth Institute, NELL-1 is crucial for bone development and bone density maintenance. Professor Ting also led numerous studies to show that local delivery of NELL-1 can regenerate musculoskeletal tissues such as bone and cartilage.

Systemic delivery of NELL-1 aboard the ISS requires the team to minimize the number of injections. Ben Wu, DDS, PhD and Yulong Zhang, PhD at the Forsyth Institute enhanced NELL-1's therapeutic potential by extending the molecule's half-life from 5.5 hours to 15.5 hours without losing bioactivity, and bioconjugated an inert bisphosphonate (BP) to create a "smart" BP-NELL-PEG molecule that more specifically targets bone tissues without the common deleterious effects of BP.

The modified molecule was then extensively assessed by the Soo and Ting teams to determine the efficacy and safety of BP-NELL-PEG on earth. They found that BP-NELL-PEG displayed superior specificity for bone tissue without causing observable adverse effects.

To ascertain the practical applicability of BP-NELL-PEG in real space conditions, the researchers worked with Center for the Advancement of Science in Space (CASIS) and National Aeronautics and Space Administration (NASA) Ames to prepare extensively for the SpaceX CRS-11 mission to the ISS, where astronauts Peggy Whitson, PhD and Jack D. Fisher, MS carried out the studies.

Half of the ISS mice were exposed to microgravity ("TERM Flight") for a lengthy 9-week period to simulate the challenges of long-duration space travel, while the remaining mice were flown back to Earth at 4.5 weeks post-launch, for the first ever live animal return ("LAR Flight") of mice in US history. Both TERM and LAR Flight groups were treated with either BP-NELL-PEG or phosphate buffered saline (PBS) control. An equivalent cohort of mice remained at the Kennedy Space Center and were treated similarly with BP-NELL-PEG or PBS to serve as normal Earth gravity ("Ground") controls.

Both Flight and Ground mice treated with BP-NELL-PEG exhibited a significant increase in bone formation. The treated mice in space and on Earth displayed no apparent adverse health effects.

"Our findings hold tremendous promise for the future of space exploration, particularly for missions involving extended stays in microgravity," said lead corresponding author Chia Soo. "If human studies bear this out, BP-NELL-PEG could be a promising tool to combat bone loss and musculoskeletal deterioration, especially when conventional resistance training is not feasible due to injuries or other incapacitating factors," said co-co-principal investigator, Kang Ting.

"This bioengineering strategy can also have important benefits on Earth, offering a potential therapy for patients suffering from extreme osteoporosis and other bone-related conditions," said co-co-principal investigator, Ben Wu.

"As the next step, UCLA project scientist, Pin Ha, MD, DDS, MS, is overseeing analysis of the live animal return data. We hope this will provide some insight on how to help future astronauts recover from longer duration space missions," said Chia Soo.

The research is supported by grants from CASIS and National Institutes of Health. Additional funding and support are provided by UCLA Division of Plastic and Reconstructive surgery, UCLA Department of Surgery, UCLA Department of Orthopaedic Surgery and the UCLA Orthopaedic Hospital Research Center, the American Association of Orthodontists Foundation, and the International Orthodontics Foundation. Pin Ha and Yulong Zhang, and associate professor Jin Hee Kwak, DDS, are co-first authors and contributed equally to this project.

Research Report:Bisphosphonate conjugation enhances the bone-specificity of NELL-1-based systemic therapy for spaceflight-induced bone loss in mice

Related Links
University of California - Los Angeles Health Sciences
Space Medicine Technology and Systems

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SPACE MEDICINE
Fitness tracker beyond Earth
Paris (ESA) Sep 18, 2023
One of the experiments during ESA astronaut Andreas Mogensen's mission will track his health and body vital signs during his daily exercise in space. Understanding how the human body copes with microgravity is the focus of many experiments on the International Space Station. While it takes about two weeks for astronauts to get used to being in space, keeping track of how the body is doing, especially during exercise, can help researchers understand how astronauts can best be assisted in orbit. ... read more

SPACE MEDICINE
FAA proposes rule to reduce space debris as SpaceX launches 22 satellites into orbit

China builds new radio telescope to support lunar, deep-space missions

AFRL'S newest supercomputer 'Raider' promises to compute years' worth of data in days

Skyloom and Satellogic sign agreement for Multipath Optical Comms Data Transmission

SPACE MEDICINE
Picogrid releases smallest AI-Enabled Command Station deployable in minutes

PLD SPACE signs a MOU with WISeKey to launch ultra-secure satellites with MIURA 5

Space Force awards Viasat contract for Proliferated Low Earth Orbit Satellite Services

Solstar Space awarded Space Force contract for Deke Space Communicator

SPACE MEDICINE
SPACE MEDICINE
Galileo becomes faster for every user

Present and future of satellite navigation

New Galileo station goes on duty

Potential earthquake precursor discovered through GPS measurements

SPACE MEDICINE
NASA concludes wind study

'We got a pilot in our house' homeowner tells dispatcher after F-35 ejection

Duke Field breaks ground on first electric aircraft charging station

US finds debris from missing F-35

SPACE MEDICINE
Canceling noise to improve quantum devices

Five things to know about British chip champion Arm

SoftBank supremo eyes rare success with Arm IPO

TSMC plans $100 million investment in Arm IPO: board

SPACE MEDICINE
Satellogic and SkyWatch increase access to timely earth observation data

NASA-built greenhouse gas detector moves closer to launch

SynMax announces acquisition of Gas Vista in energy and maritime intelligence push

Spire Global selected by Estuaire to monitor and reduce aviation emissions

SPACE MEDICINE
Six of nine planetary boundaries now exceeded

Vietnam holds think tank chief in latest green detention

Philippine smog prompts health warnings, school closures

Pope sounds alarm on 'ecological catastrophe' at UN sidelines

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.