Subscribe free to our newsletters via your
. Space Industry and Business News .




ROBO SPACE
Engineer Applies Robot Control Theory to Improve Prosthetic Legs
by Staff Writers
Dallas TX (SPX) Dec 05, 2014


Dr. Robert Gregg stands next to a robotic leg that was designed by UTDesign students and is similar to the one reported in his research.

A University of Texas at Dallas professor applied robot control theory to enable powered prosthetics to dynamically respond to the wearer's environment and help amputees walk. In research available online and in an upcoming print issue of IEEE Transactions on Robotics, wearers of the robotic leg could walk on a moving treadmill almost as fast as an able-bodied person.

"We borrowed from robot control theory to create a simple, effective new way to analyze the human gait cycle," said Dr. Robert Gregg, a faculty member in the Erik Jonsson School of Engineering and Computer Science and lead author of the paper.

"Our approach resulted in a method for controlling powered prostheses for amputees to help them move in a more stable, natural way than current prostheses."

Humanoid robots can walk, run, jump and climb stairs autonomously, but modern prosthetics limit similar actions in humans. While prosthetics have been made lighter and more flexible, they fail to mimic the power generated from human muscles in able-bodied individuals.

Powered prostheses, or robotic legs, have motors to generate force, but lack the intelligence to stably respond to disturbances or changing terrain.

Control engineers view the human gait cycle through the lens of time - the interval at which each movement in the walking cycle needs to occur. Gregg, an assistant professor of bioengineering and mechanical engineering, proposed a new way to view and study the process of human walking: measuring a single variable that represents the motion of the body. In this study, that variable was the center of pressure on the foot, which moves from heel to toe through the gait cycle.

"The gait cycle is a complicated phenomenon with lots of joints and muscles working together," Gregg said.

"We used advanced mathematical theorems to simplify the entire gait cycle down to one variable. If you measure that variable, you know exactly where you are in the gait cycle and exactly what you should be doing."

Gregg first tested his theory on computer models, and then with three above-knee amputee participants at the Rehabilitation Institute of Chicago, an affiliate of Northwestern University. He implemented his algorithms with sensors measuring the center of pressure on a powered prosthesis.

Inputted with only the user's height, weight and dimension of the residual thigh into his algorithm, the prosthesis was configured for each subject in about 15 minutes. Subjects then walked on the ground and on a treadmill moving at increasing speeds.

"We did not tell the prosthesis that the treadmill speed was increasing. The prosthesis responded naturally just as the biological leg would do," Gregg said.

The participants were able to move at speeds of more than 1 meter per second; the typical walking speed of fully able-bodied people is about 1.3 meters per second, Gregg said. The participants also reported exerting less energy than with their traditional prostheses.

Gregg said current powered prosthetic devices require a team of physical rehabilitation specialists spending significant amounts of time tuning hundreds of knobs and training each powered leg to the individual wearer.

"Our approach unified multiple modes of operation into one and resulted in technology that could help people in the future," he said. "That and the feedback from participants were very rewarding."

Gregg said the next step in the research will be to compare results of experiments with robotic legs using both the time paradigm and center of pressure paradigm.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Texas at Dallas
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROBO SPACE
Artificial intelligence: Hawking's fears stir debate
Paris (AFP) Dec 06, 2014
There was the psychotic HAL 9000 computer in "2001: A Space Odyssey". The humanoids which attacked their flesh-and-blood masters in "I, Robot". And, of course, "The Terminator", where a robot is sent into the past to kill a woman whose son will end the tyranny of the machines in the future. Never far from the surface, a dark, dystopian view of artificial intelligence (AI) has return ... read more


ROBO SPACE
Airbus Defence and Space signs contract for Microwave Sounder instruments

Researchers develop clothes that can monitor and transmit biomedical info on wearers

China developing space-based 3D printing machine

BAE Systems to produce prototype counter-radar system

ROBO SPACE
SES Demonstrates O3b Satellite Technology for US Govt Customers

LockMart completes environmental testing on 4th MUOS bird

Harris Corporation supplying Falcon III radios to Canadian military

GenDyn Canada contracted to connect military to WGS system

ROBO SPACE
NASA, SpaceX reschedule next week's ISS resupply launch

Final payload integration begins for O3b Networks' four satellites

ULA signs Orbital Sciences to launch Cygnus cargo mission to ISS

XCOR Presents New Platforms For Suborbital Science at AGU

ROBO SPACE
GPS analysts bridge gap between launch, orbit

China to Roll Out Own Global Navigation System by 2020

NIST study 'makes the case' for RFID forensic evidence management

Galileo satellite recovered and transmitting navigation signals

ROBO SPACE
New Patent For Aeroscraft Air Bearing Landing System

Britain, France contract Airbus DS for A400M maintenance support

No edge for F-35 on most missions: report

Bell demos V-22 Osprey with forward-firing weapons

ROBO SPACE
Unusual electronic state found in new class of unconventional superconductors

Computers that teach by example

High photosensitivity 2-D-few-layered molybdenum diselenide phototransistors

US tech firm Intel plans $1.6 bn investment in China

ROBO SPACE
SSC supports the DEIMOS-2 satellite from launch through commercial service

ADS to build Falcon Eye Earth-observation system for UAE

China launches another remote sensing satellite

NASA's CATS: A Launch of Exceptional Teamwork

ROBO SPACE
EU clean air, waste laws at risk

Lower IQ seen after exposure to plastic chemicals

Asbestos: An ongoing challenge to global health

French ecology minister slams 'ridiculous' log fire ban




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.