Space Industry and Business News  
TECH SPACE
Energy-efficient green route to magnesium production
by Staff Writers
Tokyo, Japan (SPX) May 22, 2017


Left) Actual pellet of dolomite and ferrosilicon. White portion is dolomite rich, and the black portion is ferrosilicon rich. Ferrosilicon is concentrated in the center portion. (Right) Five stacked to form the microwave wavelength (antenna structure). Credit Tokyo Institute of Technology

Oxide (dolomite: MgO, CaO), which is a raw material for magnesium metal, does not absorb microwave energy well and does not generate heat. This time, when electrically conductivity ferrosilicon (FeSi) used as a reducing agent was mixed with the raw dolomite material and made into an antenna* structure, it became easier to absorb the microwave energy and reduce the temperature.

Internal heating and contact point heating, which are microwave characteristics, were observed, and the average reaction temperature for this smelting was lowered from the conventional 1,200 - 1,400C to 1,000C.

This research result was published in the April 12th issue of "Scientific Reports," the online edition of the sister magazine of the UK scientific journal "Nature".

Currently, the smelting of magnesium metal is mainly performed using the Pidgeon method (thermal reduction method) where the material temperature is raised using a large amount of coal as the heat source.

About 80% of magnesium metal is produced in China. A large amount of coal is consumed for smelting, resulting in the generation of the air pollutant PM 2.5 (fine particulate matter) and the release of carbon dioxide to the atmosphere, which are major problems.

The Pidgeon method is a technique for heating dolomite ore and silicon iron to high temperatures and then cooling the evaporated magnesium to obtain magnesium metal.

2MgO (s) + 2CaO (s) + (Fe)Si (s) ? 2Mg (g) + Ca2SiO4 (s)+ Fe (s)
* s: Solid, g: Gas
Dolomite mineral: MgO, CaO; Ferrosilicon: FeSi
Heat source: Coal

Research Achievements
Normally, dolomite is a poor absorber of microwave energy and does not generate heat. However, by using ferrosilicon as the reducing agent, devising the shape of the raw material pellet obtained by mixing dolomite and ferrosilicon and forming it as an antenna so that it has a resonance structure of 2.45 GHz (same as the frequency for microwave ovens), it was possible to confine the microwave energy to the pellet.

In a small-scale experimental reactor, 1g of magnesium metal was smelted successfully. Also, in order to accurately estimate the energy, a demonstration furnace about 5 times larger than the experimental furnace was produced and experiments were conducted, resulting in the successful smelting of about 7g of magnesium metal. This can reduce energy by 68.6% compared with the conventional method.

Future Developments
This success in saving energy for smelting magnesium metal has led to the possibility of this technique being developed and applied to the high temperature reduction process of oxides.

In the future, through further development of this research, it will be applied to the smelting of other metal materials to save energy with steel, metals, materials, and chemistry, which have not advanced, and help reduce carbon dioxide, which is one of the causes of global warming.

Research paper

TECH SPACE
The brighter side of twisted polymers
Thuwal, Saudi Arabia (SPX) May 24, 2017
A strategy to produce highly fluorescent nanoparticles through careful molecular design of conjugated polymers has been developed by KAUST researchers. Such tiny polymer-based particles could offer alternatives to conventional organic dyes and inorganic semiconductor quantum dots as fluorescent tags for medical imaging. Conjugated polymer-derived nanoparticles, called Pdots, are expected t ... read more

Related Links
Tokyo Institute of Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Physicists discover mechanism behind granular capillary effect

HPC4MfG paper manufacturing project yields first results

Unfolding the folding mechanism of ladybug wings

Using light to rearrange macroscopic structures

TECH SPACE
Radio communications have surprising influence on Earth's near-space environment

Navy receiving data terminal sets from Leonardo DRS

European country orders Harris tactical radios

Israel orders satellite-on-the-go for military vehicles

TECH SPACE
TECH SPACE
2 SOPS says goodbye to GPS satellite

Researchers working toward indoor location detection

Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

TECH SPACE
Cathay Pacific sacks 600 staff in major shakeup

Typhoon and Hawk jets delivered to Oman by BAE

New ejection seat allows Air Force to lift F-35 pilot weight restriction

A-29 chosen for USAF assessment

TECH SPACE
Ultrafast tunable semiconductor metamaterial created

Using graphene to create quantum bits

Managing stress helps transistor performance

Internet of things made simple: One sensor package does work of many

TECH SPACE
NASA's CPEX tackles a weather fundamental

Earth's atmosphere more chemically reactive in cold climates

NASA Mission Uncovers Dance of Electrons in Space

Extreme weather has greater impact on nature than expected

TECH SPACE
Ozone and haze pollution weakens land carbon uptake in China

Cities need to 'green up' to reduce the impact of air pollution

Vietnam arrests activist as MP resigns over mass fish deaths

Plastic trash chokes remote South Pacific island









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.