Subscribe free to our newsletters via your
. Space Industry and Business News .




SOLAR DAILY
Empa scientists boost CdTe solar cell efficiency
by Staff Writers
Zurich, Switzerland (SPX) Aug 14, 2013


"People have tried to dope CdTe cells in substrate configuration before but failed time and again", explains Ayodhya Nath Tiwari, head of Empa's laboratory for Thin Films and Photovoltaics.

Flexible thin film solar cells that can be produced by roll-to-roll manufacturing are a highly promising route to cheap solar electricity. Now scientists from Empa, the Swiss Federal Laboratories for Materials Science and Technology, have made significant progress in paving the way for the industrialization of flexible, light-weight and low-cost cadmium telluride (CdTe) solar cells on metal foils. They succeeded in increasing their efficiency from below eight to 11.5 percent by doping the cells with copper, as they report in the current issue of "Nature Communications".

In order to make solar energy widely affordable scientists and engineers all over the world are looking for low-cost production technologies. Flexible thin film solar cells have a huge potential in this regard because they require only a minimum amount of materials and can be manufactured in large quantities by roll-to-roll processing. One such technology relies on cadmium telluride (CdTe) to convert sunlight into electricity.

With a current market share that is second only to silicon-based solar cells CdTe cells already today are cheapest in terms of production costs. Grown mainly on rigid glass plates, these so-called superstrate cells have, however, one drawback: they require a transparent supporting material that lets sunlight pass through to reach the light-harvesting CdTe layer, thus limiting the choice of carriers to transparent materials.

The inversion of the solar cell's multi-layer structure - the so-called substrate configuration - would allow further cost-cuttings by using flexible foils made of, say, metal as supporting material. Sunlight now enters the cell from the other side, without having to pass through the supporting substrate.

The problem, though, is that CdTe cells in substrate configuration on metal foil thus far exhibited infamously low efficiencies well below eight percent - a modest comparison to the recently reported record efficiency of 19.6 percent for a lab-scale superstrate CdTe cell on glass. (Commercially available CdTe superstrate modules reach efficiencies of between 11 and 12 percent.)

Copper doping for solar cells
One way to increase the low energy conversion efficiency of substrate CdTe cells is p-type doping of the semiconductor layer with minute amounts of metals such as copper (Cu). This would lead to an increase in the density of "holes" (positive charge carriers) as well as their lifetimes, and thus result in a high photovoltaic power, the amount of sunlight that is turned into electrical energy. A perfect idea - if CdTe weren't so notoriously hard to dope.

"People have tried to dope CdTe cells in substrate configuration before but failed time and again", explains Ayodhya Nath Tiwari, head of Empa's laboratory for Thin Films and Photovoltaics.

His team decided to try nonetheless using high-vacuum Cu evaporation onto the CdTe layer with a subsequent heat treatment to allow the Cu atoms to penetrate into the CdTe. They soon realized that the amount of Cu had to be painstakingly controlled: if they used too little, the efficiency wouldn't improve much; the very same happened if they "over-doped".

The electronic properties improved significantly, however, when Lukas Kranz, a PhD student in Tiwari's lab, together with Christina Gretener and Julian Perrenoud fine-tuned the amount of Cu evaporation so that a mono-atomic layer of Cu would be deposited on the CdTe. "Efficiencies increased dramatically, from just under one percent to above 12", says Kranz. Their best value was 13.6 percent for a CdTe cell grown on glass; on metal foils Tiwari's team reached efficiencies up to 11.5 percent.

Increasingly ambitious targets: hitting the 20 percent ceiling
For now, the highest efficiencies of flexible CdTe solar cells on metal foil are still somewhat lower than those of flexible solar cells in superstrate configuration on a special (and expensive) transparent polyimide foil, developed by Tiwari's team in 2011. But, says co-author Stephan Buecheler, a group leader in the lab: "

Our results indicate that the substrate configuration technology has a great potential for improving the efficiency even further in the future." Their short-term goal is to reach 15 percent. "But I'm convinced that the material has the potential for efficiencies exceeding 20 percent."

The next steps will focus on decreasing the thickness of the so-called window layer above the CdTe, including the electrical front contact. This would reduce light absorption and, therefore, allow more sunlight to be harvested by the CdTe layer. "Cutting the optical losses" is how Tiwari calls it.

.


Related Links
Empa
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR DAILY
New Program Delivers Solar Power to Low-Income Families
Denver CO (SPX) Aug 14, 2013
Low-income residents in Denver, Colo. will soon receive clean, locally-produced energy thanks to a new partnership between solar garden developer Clean Energy Collective (CEC) and the Housing Authority of the City and County of Denver (DHA). Under the new Community Solar Low-Income Residential Program, CEC will devote a portion of the power produced by three community solar facilities serving Xc ... read more


SOLAR DAILY
Toxicologist says NAS panel 'misled the world' when adopting radiation exposure guidelines

Challenges and Practices for Space Mechanisms - Part 2

New 'weird' material may be new class of solids, researchers say

Large Area Picosecond Photodetectors push timing envelope

SOLAR DAILY
New Military Communications Satellite Built By Lockheed Martin Launches

US Navy Poised to Launch Lockheed Martin-Built Secure Communications Satellite for Mobile Users

Northrop Grumman Moves New B-2 Satellite Communications Concept to the High Ground

Canada links up on secure U.S. military telecoms network

SOLAR DAILY
EUTELSAT spacecraft ready for integration to Ariane 5

Next Ariane 5 is readied to receive its dual-satellite payload

Russia to restart Proton rocket launches after crash

Japanese rocket takes supplies, robot to space station

SOLAR DAILY
Satellite tracking of zebra migrations in Africa is conservation aid

'Spoofing' attack test takes over ship's GPS navigation at sea

Orbcomm Globaltrak Completes Shipment Of Fuel Monitoring Solution In Afghanistan

Lockheed Martin GPS III Satellite Prototype To Help Cape Canaveral Air Force Station Prep For Launch

SOLAR DAILY
NASA says software will speed up air travel by streamlining departures

Cathay Pacific swings to first-half net profit

Agusta's Indian helicopter deal set for more scrutiny

Chile will upgrade old patrol aircraft rather than buy new ones

SOLAR DAILY
Scientists Find Asymmetry in Topological Insulators

Speed limit set for ultrafast electrical switch

NRL Researchers Discover Novel Material for Cooling of Electronic Devices

Nanotechnology breakthrough is big deal for electronics

SOLAR DAILY
Thai villagers mistake Google worker for government snoop

Norway says no to Apple request to photograph Oslo for 3-D maps

Africa's ups and downs

Lockheed Completes Solar UV Imager For GOES-R Enviro Tests

SOLAR DAILY
Simulating flow from volcanoes and oil spills

Philippine refiner claims responsibility for diesel spill

Philippines works to contain huge diesel spill

Dead fish after huge oil spill in Philippines




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement