Space Industry and Business News  
TIME AND SPACE
Elusive particle discovered in a material through tabletop experiment
by Staff Writers
Boston MA (SPX) Jun 10, 2022

An interdisciplinary team led by Boston College physicists has discovered a new particle - or a previously undetectable quantum excitation - known as the axial Higgs mode, a magnetic relative of the mass-defining Higgs Boson particle, the team reports in the journal Nature.

An interdisciplinary team led by Boston College physicists has discovered a new particle - or previously undetectable quantum excitation - known as the axial Higgs mode, a magnetic relative of the mass-defining Higgs Boson particle, the team reports in the online edition of the journal Nature.

The detection a decade ago of the long-sought Higgs Boson became central to the understanding of mass. Unlike its parent, axial Higgs mode has a magnetic moment, and that requires a more complex form of the theory to explain its properties, said Boston College Professor of Physics Kenneth Burch, a lead co-author of the report "Axial Higgs Mode Detected by Quantum Pathway Interference in RTe3."

Theories that predicted the existence of such a mode have been invoked to explain "dark matter", the nearly invisible material that makes up much of the universe, but only reveals itself via gravity, Burch said.

Whereas Higgs Boson was revealed by experiments in a massive particle collider, the team focused on RTe3, or rare-earth tritelluride, a well-studied quantum material that can be examined at room temperature in a "tabletop" experimental format.

"It's not every day you find a new particle sitting on your tabletop," Burch said.

RTe3 has properties that mimic the theory that produces the axial Higgs mode, Burch said. But the central challenge in finding Higgs particles in general is their weak coupling to experimental probes, such as beams of light, he said. Similarly, revealing the subtle quantum properties of particles usually requires rather complex experimental setups including enormous magnets and high-powered lasers, while cooling samples to extremely cold temperatures.

The team reports that it overcame these challenges through the unique use of the scattering of light and proper choice of quantum simulator, essentially a material mimicking the desired properties for study.

Specifically, the researchers focused on a compound long known to possess a "charge density wave", namely a state where electrons self-organize with a density that is periodic in space, Burch said.

The fundamental theory of this wave mimics components of the standard model of particle physics, he added. However, in this case, the charge density wave is quite special, it emerges far above room temperature and involves modulation of both the charge density and the atomic orbits. This allows for the Higgs Boson associated with this charge density wave to have additional components, namely it could be axial, meaning it contains angular momentum.

In order to reveal the subtle nature of this mode, Burch explained that the team used light scattering, where a laser is shined on the material and can change color as well as polarization. The change in color results from the light creating the Higgs Boson in the material, while the polarization is sensitive to the symmetry components of the particle.

In addition, through proper choice of the incident and outgoing polarization, the particle could be created with different components - such as one absent magnetism, or a component pointing up. Exploiting a fundamental aspect of quantum mechanics, they used the fact that for one configuration, these components cancel. However, for a different configuration they add.

"As such, we were able to reveal the hidden magnetic component and prove the discovery of the first axial Higgs mode," Burch said.

"The detection of the axial Higgs was predicted in high-energy particle physics to explain dark matter," Burch said. "However, it has never been observed. Its appearance in a condensed matter system was completely surprising and heralds the discovery of a new broken symmetry state that had not been predicted. Unlike the extreme conditions typically required to observe new particles, this was done at room temperature in a table top experiment where we achieve quantum control of the mode by just changing the polarization of light."

Burch said the seemingly accessible and straightforward experimental techniques deployed by the team can be applied to study in other areas.

"Many of these experiments were performed by an undergraduate in my lab," Burch said. "The approach can be straightforwardly applied to the quantum properties of numerous collective phenomena including modes in superconductors, magnets, ferroelectrics, and charge density waves. Furthermore, we bring the study of quantum interference in materials with correlated and/or topological phases to room temperature overcoming the difficulty of extreme experimental conditions.

In addition to Burch, Boston College co-authors on the report included undergraduate student Grant McNamara, recent doctoral graduate Yiping Wang, and post-doctoral researcher Md Mofazzel Hosen. Wang won the Best Dissertation in Magnetism from the American Physical Society, in part for her work on the project, Burch said.

Burch said it was crucial to draw on the broad range of expertise among researchers from BC, Harvard University, Princeton University, the University of Massachusetts, Amherst, Yale University, University of Washington, and the Chinese Academy of Sciences.

"This shows the power of interdisciplinary efforts in revealing and controlling new phenomena," Burch said. "It's not every day you get optics, chemistry, physical theory, materials science and physics together in one work."

Research Report:Axial Higgs Mode Detected by Quantum Pathway Interference in RTe3


Related Links
Boston College
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
You can hear every event twice in a three-dimensional quantum gas
Cambridge UK (SPX) Jun 10, 2022
If you could immerse yourself in a quantum fluid, you would hear every event twice, because they support two sound waves with different speeds. The researchers in their experiment have realized this remarkable property for the first time in a three-dimensional quantum gas, instead of a quantum liquid. They achieved this result through cooling a gas of potassium atoms trapped by laser beams in ultrahigh vacuum to less than a millionth of a degree above absolute zero temperature, where it partly for ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
James Webb telescope hit by micrometeoroid: NASA

Smartphone technology provides satellites with increased computing power

Recovering rare-earth elements from e-waste

Time to rebuild construction

TIME AND SPACE
Northrop Grumman runs Laser Communication Demonstration for Tranche 1 constellation

Raytheon Intelligence and Space conducts Troposcatter comms test for US Army

SmartSat buys EOS Space Systems to advance its CHORUS tactical satellite terminals

COFFEE program jump-starts integrable filtering for wideband superiority

TIME AND SPACE
TIME AND SPACE
The face of Galileo

Astrocast acquires Hiber, accelerates OEM strategy.

Volunteers watching the skies for the weather and stars

EUSPA celebrates its first 365 days of new Galileo operations

TIME AND SPACE
AFRL leads effort to develop, test Hybrid Halvorsen Aircraft Loader Prototype

SCEYE HAPS ascends to stratosphere demonstrates ability to stay over area of operation

Spanish airline to fly UK-made helium airships

Many pathways can lead to climate-neutral air transport

TIME AND SPACE
A quantum drum that stores quantum states for record-long times

Engineers build LEGO-like artificial intelligence chip

Thermal insulation for quantum technologies

The way of water: Making advanced electronics with H2O

TIME AND SPACE
Lynred launches two multispectral linear array infrared detectors for EO missions

Unravelling the mysteries of clouds

Airbus-built Earth observation satellite SARah-1 ready for launch

German radar satellite TerraSAR-X - 15 years in space and still in perfect shape

TIME AND SPACE
Polluted air cuts global life expectancy by two years

Air pollution may increase freezing rain in the Northern Hemisphere

UN crowd-funds to prevent oil spill disaster off Yemen

'My apartment vibrates': New Yorkers fight noisy helicopter rides









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.