Space Industry and Business News  
STELLAR CHEMISTRY
Elliptical galaxies not formed by merging
by Staff Writers
Rome, Italy (SPX) Jun 03, 2016


File image.

It all starts from a problem with dust: galaxies with the highest rates of star formation are also the "dustiest", because the violent process of star formation produces gas and heavy molecules.

This means that part of the electromagnetic radiation emitted by nascent stars cannot be recorded by the instruments for astronomical observation in the optical and the ultraviolet band, as it is absorbed by dust and gas and re-emitted in the infrared.

On top of this, owing to instrument limitations it is even difficult to observe this infrared radiation in the case of very distant, older galaxies. All this complicates things for astrophysicists investigating stellar and galaxy formation, and all studies to date have mostly proposed predictions based on purely theoretical models.

Claudia Mancuso, PhD student under the supervision of Andrea Lapi and Luigi Danese, SISSA professors in the astrophysics group and co-authors of the study, did the opposite: "we started from the data, available in complete form only for the closer galaxies and in incomplete form for the more distant ones, and we filled the 'gaps' by interpreting and extending the data based on a scenario we devised" comments Mancuso.

The analysis also took into account the phenomenon of gravitational lensing, which allows us to observe very distant galaxies belonging to ancient cosmic epochs.

In this "direct" manner (i.e., model-independent) the SISSA group obtained an image of the evolution of galaxies even in very ancient epochs (close, in a cosmic timescale, to the epoch of reionization).

This reconstruction demonstrates that elliptical galaxies cannot have formed through the merging of other galaxies, "simply because there wasn't enough time to accumulate the large quantity of stars seen in these galaxies through these processes", comments Mancuso. "This means that the formation of elliptical galaxies occurs through internal, in situ processes of star formation.

"These findings", states Mancuso, "will constitute a necessary starting point for building the future generation of models and numerical simulations and, more importantly, they will provide an unprecedented basis for identifying primordial galaxies in the next generation surveys in the ultraviolet with the future James Webb Space Telescope (JWST), in the millimeter band with the Atacama Large Millimeter Array (ALMA), and in the radio band with the Square Kilometer Array (SKA) interferometer".


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
International School of Advanced Studies (SISSA)
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
The Little Fox and the Giant Stars
Pasadena CA (JPL) Jun 01, 2016
New stars are the lifeblood of our galaxy, and there is enough material revealed by this Herschel infrared image to build stars for millions of years to come. Situated 8,000 light-years away in the constellation Vulpecula - Latin for "little fox" - the region in the image is known as Vulpecula OB1. It is a "stellar association" in which a batch of truly giant "OB" stars is being born. O and B st ... read more


STELLAR CHEMISTRY
Schafer Corp launches new venture in Commercial Space Situational Awareness

Multifunction Phase Array Radar (MPAR)

Automating DNA origami opens door to many new uses

Compound switches between liquid and solid states when exposed to light or heat

STELLAR CHEMISTRY
Airbus DS to provide German armed forces with satcomm services for the next 7 years

L-3 Communications to open new facility in Canada

Elbit contracted for tactical communications systems

SpeedCast to build ground station for X-band Satcom Services in Asia-Pacific

STELLAR CHEMISTRY
EchoStar XVIII and BRIsat are installed on Arianespace's Ariane 5

SpaceX makes fourth successful rocket landing

Arianespace to supply payload dispenser systems for OneWeb constellation

UK's First Spaceport Could Be Beside the Sea

STELLAR CHEMISTRY
Russian Glonass-M satellite reaches target orbit

And yet it moves: 14 Galileo satellites now in orbit

Arianespace continues the momentum for Europe's Galileo program on its latest Soyuz flight

China to launch 30 Beidou navigation satellites in next 5 years

STELLAR CHEMISTRY
Sikorsky commercial helo takes autonomous flight

USAF production decision on KC-46 delayed

Bell-Boeing gets Osprey aerial refueling contract

Lockheed gets Air Force S2E2 Increment 3 contract

STELLAR CHEMISTRY
Scientists create 'magnetic charge ice'

New tabletop instrument tests electron mobility for next-gen electronics

A switch for light-wave electronics

Dartmouth team creates new method to control quantum systems

STELLAR CHEMISTRY
New NASA instrument brings coasts and coral into focus

Bayer and Planetary Resources intend to collaborate to improve agriculture with space data

Planetary Resources raises $21M for Earth Observation platform

Drones, satellites to monitor water sources along Yangtze

STELLAR CHEMISTRY
Edible six-pack rings seek to limit harm to sea life

Clinton wins environmental campaign group's first-ever nod

Ecosystems with many and similar species can handle tougher environmental disturbances

Ocean pollution science focusing on the fragmentation of plastic waste









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.