Space Industry and Business News  
TIME AND SPACE
Electrons squeezed into 'one-dimensional' wires yield quantum effects
by Brooks Hays
Cambridge, Mass. (UPI) Sep 15, 2016


disclaimer: image is for illustration purposes only

Scientists have witnessed quantum effects in electrons after squeezing them into "one-dimensional" wires.

Researchers created so-called "quantum wires" out of the semiconducting material gallium arsenide. The wires were used to bridge the gaps between 6,000 narrow strips of metal. Scientists manipulated the magnetic field and voltage to narrow the available pathways across the bridges.

When the scientists squeezed the electrons onto the quantum wire bridges, they created a traffic jam -- triggering a wave-like quantum effect.

Researcher Christopher Ford likened this wave-like passage of subatomic information to the physics of an overcrowded trolley car.

"If someone tries to get in a door, they have to push the people closest to them along a bit to make room," Ford, a researcher at the University of Cambridge's Cavendish Laboratory, explained in a news release. "In turn, those people push slightly on their neighbors, and so on."

"A wave of compression passes down the carriage, at some speed related to how people interact with their neighbors, and that speed probably depends on how hard they were shoved by the person getting on the train," Ford continued. "By measuring this speed, one could learn about the interactions."

But electrons don't just have directional momentum, they also have spin. Scientists were able to design the quantum wire to carry the energy of these quantum spin waves -- in addition to their charge waves.

Scientists have devised a variety of theoretical ideas about how quantum spin waves are passed across a chain of electrons. The latest research allowed scientists to test their theories. Their tests confirmed predictions that different interactions between quantum-mechanical particles would produce a hierarchy of different spin wave "modes" -- some stronger than others.

The tests also confirmed the prediction that the strongest spin waves would be measured across the shortest quantum wires.

Researchers believe their findings -- detailed in the journal Nature Communications -- will help scientists better understand the behavior of quantum-mechanical particles, and allow physicists to better control electrons in quantum computers.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Dances with waves: Breakthrough in moving small objects using acoustics
Espoo, Finland (SPX) Sep 13, 2016
Researchers of Aalto University have made a breakthrough in controlling the motion of multiple objects on a vibrating plate with a single acoustic source. By playing carefully constructed melodies, the scientists can simultaneously and independently move multiple objects on the plate towards desired targets. This has enabled scientists, for instance, writing words consisting of separate letters ... read more


TIME AND SPACE
Developing composites that self-heal at very low temperatures

With great power comes great laser science

Metal in chains

Chemists watch the insides of batteries in 3D

TIME AND SPACE
Newest DARPA Challenge: 'Shift Paradigm' With Robot Radio

SES Government solutions to provide the US with a high performance network

The sky's no limit for young space professionals

Datron gets $495 million Afghan radio contract

TIME AND SPACE
Virgin Galactic signs Sky and Space Global as LauncherOne customer

A quartet of Galileo satellites is prepared for launch on Ariane 5

What Happened to Sea Launch

SpaceX scours data to try to pin down cause rocket explosion on launch pad

TIME AND SPACE
2 SOPS bids farewell to miracle satellite

China issues development plan for geoinformation industry

Inferring urban travel patterns from cellphone data

Positioning exact to the millimeter

TIME AND SPACE
Flying the flag for an airship revolution

South Korea considers buying 20 more F-35A stealth jets

Raytheon to retrofit 130 F-16 center display units

China to be first trillion-dollar air market: Boeing

TIME AND SPACE
Seeing energized light-active molecules proves quick work for Argonne scientists

One-pot synthesis towards sulfur-based organic semiconductors

Silicon nanoparticles instead of expensive semiconductors

Memory for future wearable electronics

TIME AND SPACE
THEMIS sees Auroras move to the rhythm of Earth's magnetic field

Scientists expect to calculate amount of fuel inside Earth by 2025

Vega to launch ESA's wind mission

China researches high resolution imaging from high orbit

TIME AND SPACE
Russian metals giant admits red river leak

Taiwan firm fined for polluting Vietnam canal

ICC prosecutors to step up focus on ecological crimes

Containing our 'electromagnetic pollution'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.