Space Industry and Business News  
CHIP TECH
Electrons always find a quantum way
by Staff Writers
Basel, Switzerland (SPX) Nov 23, 2015


This image shows the transport process of electrons from a superconductor (S) through a quantum dot (QD) into a metal with normal conductivity (N). Image courtesy University of Basel, Department of Physics. For a larger version of this image please go here.

Scientists from the University of Basel in Switzerland have demonstrated for the first time how electrons are transported from a superconductor through a quantum dot into a metal with normal conductivity. This transport process through a quantum dot had already been calculated theoretically in the nineties, but scientists at the University of Basel have now succeeded in proving the theory with measurements. They report on their findings in the scientific journal Physical Review Letters.

Transport properties such as electrical conductivity play an important role in technical applications of new materials and electronic components. Completely new phenomena occur, for example, when you combine a superconductor and nanometer-sized structures, known as quantum dots, in a component.

Researchers at the University of Basel working under Professor Christian Schonenberger have now constructed such a quantum dot between a superconductor and a metal with normal conductivity to study electron transport between the two components.

It should in fact be impossible to transport electrons from the superconductor through a quantum dot at low energies. Firstly, electrons never occur on an individual basis in a superconductor but rather always in two's or in so-called Cooper pairs, which can only be separated by relatively large amounts of energy.

Secondly, the quantum dot is so small that only one particle is transported at a time due to the repulsive force between electrons.

In the past, however, scientists have repeatedly observed that a current nonetheless runs between the superconductor and the metal - in other words, electron transport does occur through the quantum dot.

First evidence of the transport mechanism through a quantum dot

On the basis of quantum mechanics, theories were developed in the nineties which indicated that the transport of Cooper pairs through a quantum dot is entirely possible under certain conditions. The prerequisite is that the second electron follows the first very quickly, namely within the time roughly stipulated by Heisenberg's uncertainty principle.

The scientists at the University of Basel have now been able to accurately measure this phenomenon. In their experiments the scientists found the exact same discrete resonances that had been calculated theoretically.

In addition, the team including doctoral student Jorg Gramich and his supervisor Dr. Andreas Baumgartner was able to provide evidence that the process also works when energy is emitted into the environment or absorbed from it.

"Our results contribute to a better understanding of the transport properties of superconducting electronic nanostructures, which are of great interest for quantum technology applications", says Dr. Andreas Baumgartner.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Basel
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Superconductor survives ultra-high magnetic field
Groningen, Netherlands (SPX) Nov 23, 2015
Physicists from the universities of Groningen and Nijmegen (the Netherlands) and Hong Kong have discovered that transistors made of ultrathin layers molybdeendisulfide (MoS2) are not only superconducting at low temperatures but also stay superconducting in a high magnetic field. This is a unique phenomenon with exciting promises for the future. The experiments were the first to have been p ... read more


CHIP TECH
Primordial goo used to improve implants

From nanocrystals to earthquakes, solid materials share similar failure characteristics

UW team refrigerates liquids with a laser for the first time

Network analysis shows systemic risk in mineral markets

CHIP TECH
Australia contracts for defense computer network upgrades

Harris Corporation Wins $40 Million Air Force Satellite Control Network Contract Extension

Commercialization is coming to WGS

DARPA's RadioMap Program Enters Third Phase

CHIP TECH
NASA Selects New Technologies for Parabolic Flights and Suborbital Launches

United Launch Alliance exits launch competition, leaving SpaceX

Spaceport America opens up two new campuses

Recycled power plant equipment bolsters ULA in its energy efficiency

CHIP TECH
Raytheon completes GPS III launch readiness exercise

LockMart advances threat protection on USAF GPS Control Segment

Orbital ATK products enable improved global positioning on Earth

Galileo pair preparing for December launch

CHIP TECH
Russian company to help Iran with helicopter repair facility

U.S. Air Force deploys upgraded E-3 Sentry to combat theater

Russia, China agree $2 bln deal for 24 Su-35 warplanes: state firm

Crack discovered on F-35 test plane

CHIP TECH
Superconductor survives ultra-high magnetic field

Researchers implant organic electronics inside plants

Electrons always find a quantum way

New class of materials for organic electronics

CHIP TECH
RippleNami helps visualize change in Africa with its customizable mapping platform

RapidScat Celebrates One-Year Anniversary

Excitement Grows as NASA Carbon Sleuth Begins Year Two

NASA to fly, sail north to study plankton-climate change connection

CHIP TECH
On polluted Rio island, Brazilian ecologist dreams of miracle

Sludge from deadly Brazil mine accident reaches the Atlantic

Greenpeace India's shutdown halted temporarily, group says

Mine spill Brazil's worst environmental catastrophe: minister









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.