Space Industry and Business News  
EARTH OBSERVATION
Earth's magnetic field measured using artificial stars at 90 kilometers altitude
by Staff Writers
Mainz, Germany (SPX) Nov 16, 2018

The experiment on La Palma: The laser beam (yellow) generates an artificial guide star in the mesosphere. This light is collected in the receiver telescope (front left). The laser source and the receiver telescope are eight meters away from each other.

The mesosphere, at heights between 85 and 100 kilometers above the Earth's surface, contains a layer of atomic sodium. Astronomers use laser beams to create artificial stars, or laser guide stars (LGS), in this layer for improving the quality of astronomical observations.

In 2011, researchers proposed that artificial guide stars could also be used to measure the Earth's magnetic field in the mesosphere. An international group of scientists has recently managed to do this with a high degree of precision. The technique may also help to identify magnetic structures in the solid Earth's lithosphere, to monitor space weather, and to measure electrical currents in the part of the atmosphere called ionosphere.

Astronomers have been using lasers to generate artificial stars for the past 20 years. A laser beam is directed from the ground into the atmosphere. In the sodium layer, it strikes sodium atoms, which absorb the energy of the laser and then start to glow.

"The atoms emit light in all directions. Such artificial stars are barely visible to the naked eye but can be observed with telescopes," explained Felipe Pedreros Bustos of Johannes Gutenberg University Mainz (JGU).

In connection with the work on his doctoral thesis, the Chilean-born physicist has spent four years working on the project, which besides JGU involves the European Southern Observatory (ESO), the University of California, Berkeley and Rochester Scientific in the USA, the Italian National Institute for Astrophysics (INAF-OAR), and the University of British Columbia in Vancouver, Canada.

The artificial guide stars help astronomers to correct the distortions of light that travels through the atmosphere. The light from the artificial guide star is collected on the ground by telescopes, and the information is used to adjust in real time state-of-the-art deformable mirrors, compensating the distortions and allowing astronomical objects to be imaged sharply, down to the optical resolution, the so-called diffraction limit, of the telescope.

The precession of sodium atoms reveals the strength of the magnetic field
The participants in the collaborative project are using laser guide stars to measure the Earth's magnetic field. An ESO LGS unit dedicated to Research and Development is housed in the Roque de los Muchachos Observatory on La Palma, the westernmost Canary Island. The availability and use of the LGS unit has allowed to perform the reported joint experiments, which also aim at increasing the brightness of laser guide stars.

From the observatory, a laser beam is directed at the sodium layer which excites and spin-polarizes the atoms making most of their atomic spin point in the same direction. Due to the effect of the surrounding magnetic field, the polarized atomic spins rotate around the direction of the magnetic field similar to the motion of a gyroscope that is tilted from the vertical, a phenomenon known as Larmor precession.

"A guide star becomes brighter when the modulation frequency of our laser coincides with the precession frequency of sodium," explained Pedreros Bustos.

"As the Larmor frequency is proportional to the strength of the magnetic field, we can use this method to measure the Earth's magnetic field in the sodium layer." The detection scheme is similar to a stroboscope.

Hence, the group has succeeded in using a well-studied, fundamental laboratory technique to observe the natural world. It fills a gap in our knowledge of the Earth's magnetic field by allowing us to make ground-based observations of the mesosphere, which was previously difficult to access. Up to now, the magnetic field could only be directly measured on the ground, from airplanes, from balloons in the stratosphere, or from satellites.

In May 2018, a US-American research group had published similar findings. However, these latest measurements are much more precise, and scientists hope to improve them still further by using higher-energy lasers.

"We can also use the technique to estimate atomic processes in the atmosphere, for example, how often sodium collides with other atoms such as oxygen or nitrogen. This is something that hasn't been done before," said Pedreros Bustos.

This artificial guide star measuring technique will be particularly useful in geophysics. It will make it possible to determine changes to the magnetic field of the Earth's ionosphere caused by solar winds. In addition, observation of oceanic currents and large-scale magnetic structures in the upper mantle would be feasible by means of continuous surveillance of the Earth's magnetic field at altitudes of 85 to 100 kilometers.

Research paper


Related Links
Johannes Gutenberg Universitaet Mainz
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARTH OBSERVATION
OpenForests launches the forest project platform explorer.land
Krefeld, Germany (SPX) Nov 12, 2018
OpenForests (https://openforests.com), an innovative German forest consulting and tech company, just released the explorer.land platform. The interactive map-based platform is designed to present forest and landscape projects and tell their stories while connecting like-minded organizations and stakeholders from around the world. "We believe that explorer.land will cause a substantial paradigm shift in the way sustainable forest and landscape projects are presented to the world," says Dr. Patrick ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
UTA researchers find cheaper, less energy-intensive way to purify ethylene

Optimization of alloy materials: Diffusion processes in nano particles decoded

Thermal testing of the magnetometer boom

Flying focus: Controlling lasers through time and space

EARTH OBSERVATION
NSA certifies Harris AN/PRC-163 radio for top secret intelligence

Raytheon tapped by DARPA for high frequency digital communications research

Laser technology could be used to attract attention from aliens

Army scientist seeks enhanced soldier systems through quantum research

EARTH OBSERVATION
EARTH OBSERVATION
Finnish PM: Jammed GPS signals may be work of Russia

Air Force taps Rockwell for jam-resistant GPS navigation systems

Tunisia to host 2nd forum on China-Arab BeiDou cooperation

World's first 'Quantum' compass will supersede GPS

EARTH OBSERVATION
US fighter jet crashes off Japan's Okinawa, crew rescued

Boeing braces for trade war headwinds in China

Verdego Aero to provide hybrid-electric power propulsion option for Transcend Air VY 400 VTOL

Air Force conducts F-35 deployment exercises as operations ramp up

EARTH OBSERVATION
Bringing photonic signaling to digital microelectronics

China challenges US to provide 'evidence' in trade secrets case

US accuses China, Taiwan firms with stealing secrets from chip giant Micron

Brain-inspired methods to improve wireless communications

EARTH OBSERVATION
Alpine ice shows three-fold increase in atmospheric iodine

Improving Alignment and Testing of Earth Observation Satellites

OpenForests launches the forest project platform explorer.land

NASA's ICON to explore boundary between Earth and Space

EARTH OBSERVATION
Delhi 'lungs' turn sickly brown in days

Delhi homeless to be given masks as smog worsens: official

Delhi's toxic air spikes after Diwali firework frenzy

Delhi bans trucks as megacity chokes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.