Subscribe free to our newsletters via your
. Space Industry and Business News .




TERRADAILY
Earth's daily rotation period encoded in an atomic-level protein structure
by Staff Writers
Tokyo, Japan (SPX) Jun 28, 2015


This image shows Earth and the circadian clock protein KaiC. Image courtesy IMS/NINS. For a larger version of this image please go here.

A collaborative group of Japanese researchers has demonstrated that the Earth's daily rotation period (24 hours) is encoded in the KaiC protein at the atomic level, a small, 10 nm-diameter biomolecule expressed in cyanobacterial cells.

This research group included: Dr. Jun Abe, Assistant Prof. Atsushi Mukaiyama, and Prof. Shuji Akiyama of the Institute for Molecular Science (IMS) Research Center of Integrative Molecular Systems (CIMoS); Assistant Prof. Toshifumi Mori and Prof. Shinji Saito of the Department of Theoretical and Computational Molecular Science at IMS; Designated Prof. Takao Kondo of Nagoya University; and Assistant Prof. Eiki Yamashita of the Osaka University Institute for Protein Research.

The results of this joint research will help elucidate a longstanding question in chronobiology: How is the circadian period of biological clocks determined? The results will also help understand the basic molecular mechanism of the biological clock. This knowledge might contribute to the development of therapies for disorders associated with abnormal circadian rhythms.

The results will be disclosed online in ScienceExpress, the electronic version of Science, published by the American Association for the Advancement of Science (AAAS).

1. Research Background
In accordance with diurnal changes in the environment (notably light intensity and temperature) resulting from the Earth's daily rotation around its axis, many organisms regulate their biological activities to ensure optimal fitness and efficiency. The biological clock refers to the mechanism whereby organisms adjust the timing of their biological activities. The period of this clock is set to approximately 24 hours.

A wide range of studies have investigated the biological clock in organisms ranging from bacteria to mammals. Consequently, the relationship between the biological clock and multiple diseases has been clarified. However, it remains unclear how 24-hour circadian rhythms are implemented.

The research group mentioned above addressed this question using cyanobacteria. The cyanobacterial circadian clock can be reconstructed by mixing three clock proteins (KaiA, KaiB, and KaiC) and ATP. A study published in 2007 showed that KaiC ATPase activity, which mediates the ATP hydrolysis reaction, is strongly associated with circadian periodicity. The results of that study indicated that the functional structure of KaiC could be responsible for determining the circadian rhythm.

2. Research Results
KaiC ATPase activity exhibits a robust circadian oscillation in the presence of KaiA and KaiB proteins. In the study reported here, the temporal profile of KaiC ATPase activity exhibited an attenuating and oscillating component even in the absence of KaiA and KaiB.

A close analysis revealed that this signal had a frequency of 0.91 day-1, which approximately coincided with the 24-hour period. Thus, KaiC is the source of a steady cycle that is in tune with the Earth's daily rotation.

To identify causal structural factors, the N-terminal domain of KaiC was analyzed using high-resolution crystallography. The resultant atomic structures revealed the underlying cause of KaiC's slowness relative to other ATPases.

"A water molecule is prevented from attacking into the ideal position (a black dot in Image 3) for the ATP hydrolysis by a steric hindrance near ATP phosphoryl groups. In addition, this hindrance is surely anchored to a spring-like structure derived from polypeptide isomerization," elaborates Dr. Jun Abe.

"The ATP hydrolysis, which involves access of a water molecule to the bound ATP and reverse isomerization of the polypeptide, is expected to require a significantly larger amount of free energy than for typical ATP hydrolysis. Thus, the three-dimensional atomic structure discovered in this study explains why the ATPase activity of KaiC is so much lower (by 100- to 1,000,000-fold) than that of typical ATPase molecules."

The circadian clock's period is independent of ambient temperature, a phenomenon known as temperature compensation. One KaiC molecule is composed of six identical subunits, each containing duplicated domains with a series of ATPase motifs. The asymmetric atomic-scale regulation by the aforementioned mechanism dictates a feedback mechanism that maintains the ATPase activity at a constant low level. The authors of this study discovered that the Earth's daily rotation period (24 hours) is implemented as the time constant of the feedback mechanism mediated in this protein structure.

3. Technological Implications
KaiC and other protein molecules are capable of moving on short time scales, on the order of 10-12 to 10-1 seconds. This study provides the first atomic-level demonstration that small protein molecules can generate 24-hour rhythms by regulating molecular structure and reactivity.

Lab head and CIMoS Director Porf. Shuji Akiyama sees, "The fact that a water molecule, ATP, the polypeptide chain, and other universal biological components are involved in this regulation suggests that humans and other complex organisms may also share a similar molecular machinery.

In the crowded intracellular environment that contains a myriad of molecular signals, KaiC demonstrates long-paced oscillations using a small amount of energy generated through ATP consumption. This clever mechanism for timekeeping in a noisy environment may inspire development of highly efficient and sustainable chemical reaction processes and molecular-system-based information processing."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institutes of Natural Sciences
Dirt, rocks and all the stuff we stand on firmly






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TERRADAILY
New Grand Canyon age research focuses on western Grand Canyon
Boulder CO (SPX) Jun 17, 2015
The age of the Grand Canyon (USA) has been studied for years, with recent technological advances facilitating new attempts to determine when erosion of this iconic canyon began. The result is sometimes conflicting ages based on different types of data; most data support the notion that the canyon began to erode to its current form about six million years ago. Then even newer, "high-tech," ... read more


TERRADAILY
Cleaning Up Orbital Debris - Not!

Jason-3 Satellite Arrives at California Launch Site

Speeding Up Synthetic Chemistry

Cellulose from wood can be printed in 3-D

TERRADAILY
Airbus DS unveils new mobile welfare communication portfolio

Lockheed, Raytheon, Bombardier team for JSTARS contract bid

Britain looks to replace tactical radios

Mutualink enables multi-agency collaboration during DoD exercise

TERRADAILY
Garvey Spacecraft selects Pacific Spaceport Complex

Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

NASA issues RFP for New Class of Launch Services

TERRADAILY
GPS Industries Launches Troon Connectivity Program

Raytheon Demonstrates Advanced GPS OCX Capabilities

Russia Begins Mass Production of Glonass-K1 Navigation Satellites

Russia, China Plan to Equip Commercial Trucks With Glonass, BeiDou

TERRADAILY
General Atomics producing carrier EMALS system

Italian AF introduces new HH-101A Caesar helicopter

Boeing delivers 28th C-17 crew training simulator

Iraqi F-16 jet crashes in Arizona: US military

TERRADAILY
Stanford engineers find a simple yet clever way to boost chip speeds

Designer electronics out of the printer

KAIST team develops the first flexible phase-change random access memory

New boron compounds for organic light-emitting diodes

TERRADAILY
New research shows Earth's core contains 90 percent of Earth's sulfur

A New Era of Space Collaboration between Australia and US

Second Copernicus environmental satellite safely in orbit

Magnetic complexity begins to untangle

TERRADAILY
NOAA, partners predict an average 'dead zone' for Gulf of Mexico

Road noise may cut life expectancy, says study

Chilean capital in first pollution emergency in 16 years

Scientists help public avoid health risks of toxic blue-green algae




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.