Space Industry and Business News  
OIL AND GAS
Earth-abundant solar pixels found to produce hydrogen for weeks
by Staff Writers
Cambridge UK (SPX) Jun 10, 2022

BiOI pixels produce hydrogen bubbles under illumination

Devices made of readily available oxide and carbon-based materials can produce clean hydrogen from water over weeks - according to new research.

The findings, co-led by Dr Virgil Andrei, a Research Fellow at St John's College, University of Cambridge, with academics at Imperial College London, could help overcome one of the key issues in solar fuel production, where current earth-abundant light-absorbing materials are limited through either their performance or stability.

Underexplored materials for light harvesting
Hydrogen fuel will play a critical role in the transition to full decarbonisation and reaching the UK's goal of net-zero emissions by 2050. With most hydrogen currently supplied from fossil fuels, researchers are now working to find ways to generate hydrogen more sustainably. One way to achieve this is to make devices that can harvest sunlight and split water to produce green hydrogen.

While many light-absorbing materials have been tested for green hydrogen production, most degrade quickly when submerged in water. For example, perovskites are the fastest-growing materials in terms of light-harvesting efficiency, but are unstable in water and contain lead. This presents a risk of leakage; therefore, researchers have been working to develop lead-free alternatives.

Bismuth oxyiodide (BiOI) is a non-toxic semiconductor alternative which has been overlooked for solar fuel applications due to its poor stability in water. But based on previous findings into the potential of BiOI, researchers decided to revisit the promise of this material for the production of green hydrogen.

Dr Robert Hoye, Lecturer in the Department of Materials at Imperial College London, explained: "Bismuth oxyiodide is a fascinating photoactive material that has energy levels at the right positions for water splitting. A few years ago, we demonstrated that BiOI solar cells are more stable than those using state-of-the-art perovskite light absorbers. We wanted to see if we can translate that stability to green hydrogen production."

Professor Judith Driscoll, Department of Materials Science and Metallurgy, University of Cambridge, said: "We have been working on this material for some time, due to its wide-ranging potential applications, as well as its simplicity of fabrication, low toxicity and good stability. It was great to combine the expertise of the different research groups across Cambridge and with Imperial."

Breakthrough in solar fuel production
The team of researchers created devices that mimicked the natural photosynthesis process occurring in plant leaves, except they produce fuels like hydrogen instead of sugars. These artificial leaf devices were made from BiOI and other sustainable materials, harvesting sunlight to produce O2, H2 and CO.

Researchers found a way to increase the stability of these artificial leaf devices by inserting BiOI between two oxide layers. The robust oxide-based device structure was further coated with a water-repellent graphite paste, which prevented moisture infiltration. This prolonged the stability of the bismuth oxyiodide light-absorbing pixels from minutes to a couple of months, including the time the devices were left in storage.

This is a significant finding that transforms BiOI into a viable light harvester for stable green hydrogen production.

"These oxide layers improve the ability to produce hydrogen compared to stand-alone BiOI," said Dr Robert Jagt (Department of Materials Science and Metallurgy, University of Cambridge), one of the co-lead authors.

Researchers further found that artificial leaf devices comprising of multiple light harvesting areas (called 'pixels') demonstrated a higher performance over conventional devices with a single larger pixel of same total size. This finding could make the scale up of novel light harvesters much easier and faster for sustainable fuel production.

Dr Virgil Andrei, a co-lead author from the Department of Chemistry in Cambridge, explains: "Even if some pixels are faulty, we were able to disconnect them, so they don't affect the rest. This meant we could sustain the performance of the small pixels on a larger area." This increased performance enabled the device to not only produce hydrogen but also reduce CO2 to synthesis gas, an important intermediate in the industrial synthesis of chemicals and pharmaceuticals.

Looking to the future
The findings demonstrate the potential for these new devices to challenge the performance of existing light absorbers. The new ways of making BiOI artificial leaf devices more stable can now be translated to other novel systems, helping to bring them towards commercialisation.

"This is an exciting development! At the moment, few solar fuel systems show stabilities which are compatible to real-world applications. With this work, we make a step forward towards establishing a circular fuel economy", said Prof Erwin Reisner (Department of Chemistry, Cambridge), one of the corresponding authors.

The findings have been published in the journal Nature Materials.

Research Report:Long-term solar water and CO2 splitting with photoelectrochemical BiOI-BiVO4 tandems


Related Links
University of Cambridge
All About Oil and Gas News at OilGasDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


OIL AND GAS
Climate: Africa's energy future on a knife's edge
Paris (AFP) June 10, 2022
With more than half its population lacking mains electricity and still using charcoal and other damaging sources for cooking, Africa's energy future - torn between fossil fuels and renewables - is up for grabs. As nations discuss the climate crisis at the UN's mid-year negotiations in Bonn, AFP spoke to Mohamed Adow, founder of think tank Power Shift Africa, about the forces pulling the continent in opposing directions. The stakes, he warns, are global. Q. You have said rich nations owe t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OIL AND GAS
Irvine scientists observe effects of heat in materials with atomic resolution

Recovering rare-earth elements from e-waste

Superworms capable of munching through plastic waste

Meta's Quest VR gear to let people 'hang out' in fake worlds

OIL AND GAS
SmartSat buys EOS Space Systems to advance its CHORUS tactical satellite terminals

COFFEE program jump-starts integrable filtering for wideband superiority

MINC Program Aims to Enable Critical Data Flow Even in Contested Environments

Dutch researchers teleport quantum information across rudimentary quantum network

OIL AND GAS
OIL AND GAS
Astrocast acquires Hiber, accelerates OEM strategy.

Volunteers watching the skies for the weather and stars

EUSPA celebrates its first 365 days of new Galileo operations

Xona passes critical testing milestone as private GNSS readies for launch

OIL AND GAS
MIT unveils new Wright Brothers Wind Tunnel

Urban canyons prolong sonic booms in cities

Many pathways can lead to climate-neutral air transport

One dead after fighter jet crashes into homes in central China

OIL AND GAS
A quantum drum that stores quantum states for record-long times

Engineers build LEGO-like artificial intelligence chip

Thermal insulation for quantum technologies

The way of water: Making advanced electronics with H2O

OIL AND GAS
Updating our understanding of Earth's architecture

The consequences of climate change in the Alps are visible from space

China's newly-launched meteorological satellites put into trial operation

Five things to know about NASA's new mineral dust detector

OIL AND GAS
Seductive rubbish: Swedish dustbins scream with pleasure

Swedish coast guard spot massive mystery spill

Dozens treated in Chile for suspected pollutant exposure

US to ban single-use plastics on public lands by 2032









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.