Subscribe free to our newsletters via your
. Space Industry and Business News .




FLORA AND FAUNA
Early warning signs of population collapse
by Anne Trafton for MIT News
Boston MA (SPX) Apr 15, 2013


MIT physicists studied early signs of population collapse in the yeast Saccharomyces cerevisiae. Image: Wikimedia Commons/Masur.

Many factors - including climate change, overfishing or loss of food supply - can push a wild animal population to the brink of collapse. Ecologists have long sought ways to measure the risk of such a collapse, which could help wildlife and fishery managers take steps to protect endangered populations.

Last year, MIT physicists demonstrated that they could measure a population's risk of collapse by monitoring how fast it recovers from small disturbances, such as a food shortage or overcrowding. However, this strategy would likely require many years of data collection - by which time it could be too late to save the population.

In a paper appearing in the April 10 online edition of Nature, the same research team describes a new way to predict the risk of collapse, based on variations in population density in neighboring regions. Such information is easier to obtain than data on population fluctuations over time, making it potentially more useful, according to the researchers.

"Spatial data are more accessible," says Lei Dai, an MIT graduate student in physics and lead author of the study. "You can get them by satellite images, or you could just go out and do a survey."

Led by Jeff Gore, an assistant professor of physics, Dai and Kirill Korolev, a Pappalardo Postdoctoral Fellow, grew yeast in test tubes and tracked the populations as they approached collapse. Yeast cells cooperate with other members of the population: Each of the organisms secretes an enzyme that breaks down sucrose in the environment into smaller sugars that it can use as a food source. All of the yeast benefit from this process, so a population is most successful when it maintains a certain density - neither too low nor too high.

In last year's study, the researchers found that in populations of yeast that are subjected to increasingly stressful conditions, populations become less and less resilient to new disturbances until they reach a tipping point at which any small disruption could wipe out a population.

This phenomenon can be spotted quickly in yeast, which produces about 10 new generations per day, but measuring these population fluctuations for species such as fish or deer would take much more time. In hopes of finding more useful signals, the researchers turned their attention to spatial information.

There goes the neighborhood
In their new study, the researchers theorized a new type of indicator that they call "recovery length" - the spatial counterpart to recovery time. This idea is based on the observation that populations living near the boundary of a less hospitable habitat are affected, because the neighboring habitats are connected by migration.

Populations further away from the bad region gradually recover to equilibrium, and the spatial scale of this recovery can reveal a population's susceptibility to collapse, according to the researchers.

To test this idea, the researchers first established several linked yeast populations in a state of equilibrium. At the end of each day, a certain percentage of each population was transferred to adjacent test tubes, representing migration to adjacent regions.

The researchers then introduced a "bad" habitat, where only one in every 2,500 yeast survives from one day to the next. This reduction in population mimics what might happen in a natural population plagued by overfishing, or by a drastic reduction in its food supply.

The MIT team found that populations closest to the bad habitat had the hardest time maintaining an equilibrium state. Populations farther away maintained their equilibrium more easily.

"There's some distance you have to go away from the bad region in order to get recovery of the population density," Gore says. "How far you have to go before you reach equilibrium is the recovery length, and that tells you how close these populations are to collapse."

The recovery length varies based on how much stress the populations are already under.

To apply this finding to a natural population, population density would need to be measured in a range of adjacent areas at increasing distances from a good/bad boundary. This information could then be mapped to reveal the recovery length. "What's great about the recovery length is you don't need a long time series. You could just measure it at one moment in time," Gore says.

The MIT researchers are hoping to expand their studies to natural populations such as honeybees, fisheries or forests. They are also studying more complex experimental ecosystems involving several microbial species.

The research was funded by a Whitaker Health Sciences Fund Fellowship, a Pappalardo Fellowship, a National Institutes of Health Pathways to Independence Award and New Innovator Award, a National Science Foundation CAREER Award, a Sloan Research Fellowship, the Pew Scholars Program and the Allen Investigator Program.

.


Related Links
Massachusetts Institute Of Technology
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
World-first research will save koalas
Brisbane, Australia (SPX) Apr 15, 2013
The "holy grail" for understanding how and why koalas respond to infectious diseases has been uncovered in an Australian-led, world-first genome mapping project. The joint undertaking between QUT and The Australian Museum has unearthed a wealth of data, including the koala interferon gamma (IFN-g) gene - a chemical messenger that plays a key role in the iconic marsupial's defence against c ... read more


FLORA AND FAUNA
High pressure gold nanocrystal structure revealed

Scientists design new adaptive material inspired by tears

UC Research Demonstrates Why Going Green Is Good Chemistry

Florida Tech professors present 'dark side of dark lightning' at conference

FLORA AND FAUNA
Boeing Delivers FAB-T Test Units to US Air Force

Fourth Lockheed Martin MUOS Satellite Entering System Test as Communication Module and Multi-Beam Antenna Installed

Advancing secure communications: A better single-photon emitter for quantum cryptography

Northrop Grumman Awarded U.S. Navy Contract to Upgrade, Enhance NGC2P Tactical Data Link Processor

FLORA AND FAUNA
Payload integration is underway for Vega's second mission from the Spaceport

Ecuador to launch first homemade satellite

Arianespace receives the second Vega for launch from French Guiana

Future Looks Bright for Private US Space Ventures

FLORA AND FAUNA
Smithsonian dedicates new exhibition to navigation

Extreme Miniaturization: Seven Devices, One Chip to Navigate without GPS

Down the slopes with space app in your pocket

Lockheed Martin Team Completes Delta Preliminary Design for Next GPS III Satellite Capabilities

FLORA AND FAUNA
Boeing X-48C Blended Wing Body Research Aircraft Completes Flight Testing

X-48 Project Completes Flight Research for Cleaner, Quieter Aircraft

Dassault and India in Rafale deal standoff

Israel boosts air force 'pack of leopards

FLORA AND FAUNA
Interdisciplinary team demonstrates superconducting qualities of topological insulators

Redesigned Material Could Lead to Lighter, Faster Electronics

A step toward optical transistors?

New 'transient electronics' disappear when no longer needed

FLORA AND FAUNA
Belarus, Russia to Create New Satellite Grouping

Kazakhstan to launch first remote sensing satellite this year

Raytheon brings automation and virtualization to NASA's Earth Observing System

Ball Aerospace Begins Integration Phase for DigitalGlobe's WorldView-3 Satellite

FLORA AND FAUNA
Albania to hold referendum on waste imports

Smog-eating pavement on greenest street in America

Latin America looks to earn from e-waste

Russia seeks Baltic pollution partnerships




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement