Space Industry and Business News  
DISASTER MANAGEMENT
Drought, Deluge Turned Stable Landslide into Disaster
by Carol Rasmussen for NASA's Earth Science News
Pasadena CA (JPL) Feb 08, 2019

The Mud Creek landslide in photographic and radar images. The radar velocity map shows the pre-collapse (solid line) and post-collapse (dashed line) extent of the sliding area, with faster sliding velocities before the collapse shown in darker shades of red. The highest velocities were about 16 inches (40 centimeters) per year. This image is available as an extended gif animation here

"Stable landslide" sounds like a contradiction in terms, but there are indeed places on Earth where land has been creeping downhill slowly, stably and harmlessly for as long as a century. But stability doesn't necessarily last forever. For the first time, researchers at NASA's Jet Propulsion Laboratory in Pasadena, California, and collaborating institutions have documented the transition of a stable, slow-moving landslide into catastrophic collapse, showing how drought and extreme rains likely destabilized the slide.

The Mud Creek landslide near Big Sur, California, dumped about 6 million cubic yards (5 million cubic meters) of rock and debris across California Highway 1 on May 20, 2017. The damage took more than a year and $54 million to repair. No long-term motion had been documented at Mud Creek before this event, but workers in the state's transportation department had noticed small mudslides in the weeks before the collapse and closed the highway as a precaution.

The JPL-led team identified Mud Creek as a stable landslide using an eight-year data set from an airborne JPL instrument called the Uninhabited Airborne Vehicle Synthetic Aperature Radar, processed with a technique called interferometric synthetic aperture radar processing (InSAR). They calculated that Mud Creek had been sliding at an average speed of about 7 inches (17 centimeters) per year since at least 2009. They used the European Space Agency's Sentinel-1A/B satellite data to document how the sliding area's behavior changed.

The airborne and satellite data measure changes only at the ground surface, however. "From that, we tried to infer what may have happened to the landslide's sliding surface, tens of meters underground, that allowed the Mud Creek slide to transition from stable to unstable," said the study's lead author, Alexander Handwerger, a NASA postdoctoral fellow doing research at JPL.

The collapse happened after several days of heavy rainfall during one of the wettest years in over a century for this area. Before 2017, a five-year drought had produced several of California's hottest and driest years ever. Using a computer model of how water affects soil, the researchers studied what would happen as the intense rains saturated the parched ground. Water would replace air in the tiny spaces between soil particles, greatly increasing the pressure on the particles. This pressure change could have destabilized the sliding surfaces belowground and triggered the collapse.

California alone has more than 650 known stable landslides. If one began losing stability in the future, could InSAR data reveal the change? To answer that question, the team compared the Mud Creek images with images of two other stable landslides in similar types of soil and rock.

Paul's Slide, only 13 miles (21 kilometers) north of Mud Creek, went through the same weather conditions yet did not fail catastrophically. A landslide in Northern California received over 3 feet (1 meter) more rainfall than Mud Creek without catastrophic failure. "We thought if we compared these two cases that didn't fail to the one that did, we might find some characteristic velocity pattern that would be a warning that a slide was going to fail catastrophically," Handwerger said.

The idea paid off. Handwerger found that all three stable slides accelerated slightly after the winter rainy season started and then, as the season continued, slowed down again and stabilized. This is their usual annual pattern. But after the late-season rains, Mud Creek accelerated again, increasing in speed until its ultimate collapse. The other slides did not.

"We think that second speed-up may be a signal of interest, but we only have this one case," Handwerger said. "Since we now know that stable landslides in this region can fail catastrophically and we have good data coverage here, our plan is to monitor this whole stretch of the Pacific Coast Highway and look for these unusual velocity changes. If we get enough examples, we can start to actually figure out the mechanisms that are controlling this behavior."

The paper on the research, titled "A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure," was published in Scientific Reports. Coauthors represent JPL; the University of Maryland in College Park; Portland State University in Oregon; and the University of California, Berkeley.


Related Links
NASA Earth Science Disasters Program
Bringing Order To A World Of Disasters
A world of storm and tempest
When the Earth Quakes


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


DISASTER MANAGEMENT
14 dead, seven missing in Bolivian landslides
La Paz (AFP) Feb 4, 2019
Two landslides in Bolivia left 14 people dead and seven missing, national police chief Romulo Delgado said on Monday. Torrential rain caused the landslides on Saturday and Sunday on the road linking the capital La Paz to the northern town of Caranavi, the gateway to the Amazon rainforest. President Evo Morales said on his Twitter account that helicopters were being used to transport 34 people who were injured to local hospitals. He also posted pictures of himself at the scene alongside rescu ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

DISASTER MANAGEMENT
Green alternative to PET could be even greener

3D printed tires and shoes that self-repair

Researchers use artificial neural networks to streamline materials testing

Observing hydrogen's effects in metal

DISASTER MANAGEMENT
Lockheed Martin to develop cyber electronic warfare pod for UAVs

Britain to spend $1.3M for satellite antennas in light of Brexit

Reflectarray Antenna offers high performance in small package: DARPA

BAE signs $79.8M contract with Navy for Pacific comms support

DISASTER MANAGEMENT
DISASTER MANAGEMENT
Kite-blown Antarctic explorers make most southerly Galileo positioning fix

Magnetic north pole leaves Canada, on fast new path

China to launch 10 BeiDou satellites in 2019

Magnetic North's erratic behavior forces update to global navigation system

DISASTER MANAGEMENT
Air Force names first female flight commander for F-16 Viper team

Boeing awarded $39M to finalize new Chinooks for U.S. Special Ops

Kay and Associates awarded $63M for support on Kuwaiti F/A-18s

Boeing bullish on 2019 despite US-China tensions

DISASTER MANAGEMENT
Controllable electron flow in quantum wires

Theoretical model may help solve molecular mystery

Argonne researchers develop new method to reduce quantum noise

Waterproof graphene electronic circuits

DISASTER MANAGEMENT
Early spring rain boosts methane from thawing permafrost by 30 percent

New scale to characterize strength and impacts of atmospheric river storms

Earth-i Updates Satellite Map of Queensland, Australia

Visualization of regions of electromagnetic wave-plasma interactions surrounding the Earth

DISASTER MANAGEMENT
A warming world increases air pollution

Hungary court jails company officials over 2010 toxic spill

Brazil dam disaster: mourning and dead fish along river of mud

Hospitals filling up in Europe's most polluted capital









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.