Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Drexel materials scientists putting a new spin on computing memory
by Staff Writers
Philadelphia PA (SPX) Apr 30, 2015


This is a colorized scanning transmission electron micrograph of the LSMO / PZT interface. Using aberration-corrected electron microscopy, the authors are able to resolve small changes in atomic structure and chemistry at nearly the picometer scale. This yields a valuable and unprecedented new insight into the properties of oxide interfaces. Image courtesy Drexel University.

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data. Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting from the beginning, and dropping the device could wipe out the memory altogether.

As computers continue to shrink--moving from desks and laps to hands and wrists--memory has to become smaller, stable and more energy conscious. A group of researchers from Drexel University's College of Engineering is trying to do just that with help from a new class of materials, whose magnetism can essentially be controlled by the flick of a switch.

The team, led by Mitra Taheri, PhD, Hoeganaes associate professor in the College of Engineering and head of the Dynamic Characterization Group in the Department of Materials Science and Engineering, is searching for a deeper understanding of materials that are used in spintronic data storage.

Spintronics, short for "spin transport electronics," is a field that seeks to harness the natural spin of electrons to control a material's magnetic properties. For an application like computing memory, in which magnetism is a key element, understanding and manipulating the power of spintronics could unlock many new possibilities.

Current computer data storage takes one of two main forms: hard drives or random access memories (RAM). You can think of a hard drive kind of like a record or CD player, where data is stored on one piece of material--a hard disk--and accessed by a magnetic read head, which is the computer's equivalent of the record player's needle or the CD player's laser.

RAM stores data by encoding it in binary patterns of electrical charges called bits. An external electric field nudges electrons into or out of capacitors to create the charge pattern and encode the data.

To store data in either type of memory device we must apply an external magnetic or electric field--either to read or write the data bits. And generating these fields draws quite a bit of energy. In a desktop computer that might go unnoticed, but in a handheld device or a laptop, quality is based, in large part, on how long the battery lasts.

Spintronic memory is an attractive alternative to hard drives and RAM because the material could essentially rewrite itself to store data. Eliminating the need for a large external magnetic field or a read head would make the device less power-intensive and more rugged because it has fewer moving parts.

"It's the difference between a pre-whiteout typewriter and the first word processor," said Steven Spurgeon, PhD, an alumnus whose doctoral work contributed to the team's recently published research in Nature Communications.

"The old method required you to move a read head over a bit and apply a strong magnetic field, while the newer one lets you insert data anywhere on the fly. Spintronics could be an excellent, non-destructive alternative to current hard drive and RAM devices and one that saves a great deal of battery life."

While spintronic materials have been used in sensors and as part of hard drive read heads since the early 2000s, they have only recently been explored for direct use in memories. Taheri's group is closely examining the physical principles behind spintronics at the atomic scale to look for materials that could be used in memory devices.

"We're trying to develop a framework to understand how the many parameters--structure, chemistry, magnetism and electronic properties--are related to each other," said Taheri, who is the principle investigator on the research program, funded by the National Science Foundation and the Office of Naval Research.

"We're peering into these properties at the atomic scale and probing them locally, in contrast to many previous studies. This is an important step toward more predictive and far-reaching use of spintronics."

Theoretically, spintronic storage could encode data by tuning electron spins with help from a special, polarized electrical current running through the material. The binary pattern is then created by the "up" or "down" spin of the electrons, rather than their presence "in" or "out" of a capacitor.

To better understand how this phenomenon occurs, the team took a closer look at structure, chemistry and magnetism in a layered thin film oxide material that has shown promise for use in spintronic data storage, synthesized by researchers at the University of Illinois--Urbana Champaign.

The researchers used advanced scanning transmission electron microscopy, electron energy loss spectroscopy and other high-resolution techniques to observe the material's behavior at the intersections of the layers, finding that parts of it are unevenly electrically polarized--or ferroelectric.

"Our methodology revealed that polarization varies throughout the material--it is not uniform," said Spurgeon, who is now a postdoctoral research associate at Pacific Northwest National Laboratory. "This is quite significant for spintronic applications because it suggests how the magnetic properties of the material can be tuned locally. This discovery would not have been possible without our team's local characterization strategy."

They also used quantum mechanical calculations to model and simulate different charge states in order to explain the behavior of the structures that they observed using microscopy. These models helped the team uncover the key links between the structure and chemistry of the material and its magnetic properties.

"Electronic devices are continually shrinking." Taheri said. "Understanding these materials at the atomic scale will allow us to control their properties, reduce power consumption and increase storage densities. Our overarching goal is to engineer materials from the atomic scale all the way up to the macroscale in a predictable way. This work is a step toward that end."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Drexel University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Researchers develop acoustically driven controls for smartphones
Pittsburgh PA (SPX) Apr 22, 2015
As people find ever more inventive uses for smartphones, touchscreens sometimes fall short as control surfaces. Researchers at Carnegie Mellon University and Disney Research have developed an inexpensive alternative - a toolbox of physical knobs, sliders and other mechanisms that can be readily added to any device. The researchers drew inspiration from wind instruments in devising these me ... read more


CHIP TECH
Electron spin brings order to high entropy alloys

MIPT researchers grow cardiac tissue on 'spider silk' substrate

Autonomous convergence and divergence of self-powered soft liquid metals

Graphene brings 3-D holograms clearer and closer

CHIP TECH
U.S. Special Operations Command orders MUOS-capable radios

Thales supplying intercoms for Australian military vehicles

Army issues draft RFP for manpack radios

Rockwell Collins intros new military communications system

CHIP TECH
Ariane 5 reaches the launch zone for next heavy-lift mission

Sentinel-2A arrives for Ariane Vega mission

Arianespace Flight VA222: THOR 7 and SICRAL 2 - launch delayed

SpaceX Dragon cargo ship arrives at space station

CHIP TECH
Telit GNSS module enables high-performance position reporting

China to launch three or four more BeiDou satellites this year

Two new satellites join the Galileo constellation

China launches upgraded satellite for independent SatNav system

CHIP TECH
Cornerstone laid for C-17 facility in Hungary

Dassault providing aircraft to Japan Coast Guard

Poland pre-selects Airbus helo for acquisition

Europe's Airbus wins Polish chopper deal: report

CHIP TECH
Researchers develop acoustically driven controls for smartphones

From metal to insulator and back again

Drexel materials scientists putting a new spin on computing memory

Control of quantum bits in silicon paves way for large quantum computers

CHIP TECH
Fast access to CryoSat's Arctic ice measurements now available

SPoRT disaster response team provides imagery for Illinois tornadoes

GOCE helps tap into sustainable energy resources

NASA, USGS Begin Work on Landsat 9 to Continue Land Imaging Legacy

CHIP TECH
Flameproof falcons and hawks

Air pollution levels drop in China: Greenpeace

Dwindling bird populations in Fukushima

India government trying to shut us down: Greenpeace




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.