Space Industry and Business News  
SOLAR DAILY
Dream of energy-collecting windows is one step closer to reality
by Staff Writers
Minneapolis MN (SPX) Feb 22, 2017


File image.

Researchers at the University of Minnesota and University of Milano-Bicocca are bringing the dream of windows that can efficiently collect solar energy one step closer to reality thanks to high tech silicon nanoparticles.

The researchers developed technology to embed the silicon nanoparticles into what they call efficient luminescent solar concentrators (LSCs). These LSCs are the key element of windows that can efficiently collect solar energy. When light shines through the surface, the useful frequencies of light are trapped inside and concentrated to the edges where small solar cells can be put in place to capture the energy.

The research is published in Nature Photonics, a peer-reviewed scientific journal published by the Nature Publishing Group.

Windows that can collect solar energy, called photovoltaic windows, are the next frontier in renewable energy technologies, as they have the potential to largely increase the surface of buildings suitable for energy generation without impacting their aesthetics - a crucial aspect, especially in metropolitan areas. LSC-based photovoltaic windows do not require any bulky structure to be applied onto their surface and since the photovoltaic cells are hidden in the window frame, they blend invisibly into the built environment.

The idea of solar concentrators and solar cells integrated into building design has been around for decades, but this study included one key difference - silicon nanoparticles. Until recently, the best results had been achieved using relatively complex nanostructures based either on potentially toxic elements, such as cadmium or lead, or on rare substances like indium, which is already massively utilized for other technologies.

Silicon is abundant in the environment and non-toxic. It also works more efficiently by absorbing light at different wavelengths than it emits. However, silicon in its conventional bulk form, does not emit light or luminesce.

"In our lab, we 'trick' nature by shirking the dimension of silicon crystals to a few nanometers, that is about one ten-thousandths of the diameter of human hair," said University of Minnesota mechanical engineering professor Uwe Kortshagen, inventor of the process for creating silicon nanoparticles and one of the senior authors of the study.

"At this size, silicon's properties change and it becomes an efficient light emitter, with the important property not to re-absorb its own luminescence. This is the key feature that makes silicon nanoparticles ideally suited for LSC applications."

Using the silicon nanoparticles opened up many new possibilities for the research team.

"Over the last few years, the LSC technology has experienced rapid acceleration, thanks also to pioneering studies conducted in Italy, but finding suitable materials for harvesting and concentrating solar light was still an open challenge," said Sergio Brovelli, physics professor at the University of Milano-Bicocca, co-author of the study, and co-founder of the spin-off company Glass to Power that is industrializing LSCs for photovoltaic windows "Now, it is possible to replace these elements with silicon nanoparticles."

Researchers say the optical features of silicon nanoparticles and their nearly perfect compatibility with the industrial process for producing the polymer LSCs create a clear path to creating efficient photovoltaic windows that can capture more than 5 percent of the sun's energy at unprecedented low costs.

"This will make LSC-based photovoltaic windows a real technology for the building-integrated photovoltaic market without the potential limitations of other classes of nanoparticles based on relatively rare materials," said Francesco Meinardi, physics professor at the University of Milano-Bicocca and one of the first authors of the paper.

The silicon nanoparticles are produced in a high-tech process using a plasma reactor and formed into a powder.

"Each particle is made up of less than two thousand silicon atoms," said Samantha Ehrenberg, a University of Minnesota mechanical Ph.D. student and another first author of the study. "The powder is turned into an ink-like solution and then embedded into a polymer, either forming a sheet of flexible plastic material or coating a surface with a thin film."

The University of Minnesota invented the process for creating silicon nanoparticles about a dozen years ago and holds a number of patents on this technology. In 2015, Kortshagen met Brovelli, who is an expert in LSC fabrication and had already demonstrated various successful approaches to efficient LSCs based on other nanoparticle systems.

The potential of silicon nanoparticles for this technology was immediately clear and the partnership was born. The University of Minnesota produced the particles and researchers in Italy fabricated the LSCs by embedding them in polymers through an industrial based method, and it worked.

"This was truly a partnership where we gathered the best researchers in their fields to make an old idea truly successful," Kortshagen said. "We had the expertise in making the silicon nanoparticles and our partners in Milano had expertise in fabricating the luminescent concentrators. When it all came together, we knew we had something special."

Research paper: "Highly efficient luminescent solar concentrators based on Earth-abundant indirect-bandgap silicon quantum dots"

SOLAR DAILY
Trina Solar modules eligible for calls for tenders in France
Zurich, Switzerland (SPX) Feb 21, 2017
Trina Solar Limited (NYSE: TSL) ("Trina Solar" or the "company"), a global leader in photovoltaic ("PV") modules, solutions, and services, has announced that its PV modules, after an official audit, were in conformity with the regulation for CRE3, CRE4, Simplified Tenders (AOS) and self-consumption calls for tender in France. This will allow the company's customers and partners to specify those ... read more

Related Links
University of Minnesota
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Scientists discover how essential methane catalyst is made

New assembly method for ultra-conformable 'electronic tattoo' devices

Serendipity uncovers borophene's potential

Penn researchers are among the first to grow a versatile 2-dimensional material

SOLAR DAILY
IAI secures $30 million in signals intelligence contracts

Terahertz wireless could make spaceborne satellite links as fast as fiber-optic links

Airbus provides satcom for EU security missions in Mali, Niger and Somalia

Engie, Airbus tapped to support French defense networks

SOLAR DAILY
SOLAR DAILY
GLONASS station in India to expedite 'space centric' warfare command

Australia and Lockheed field 2nd-Gen sat-based augmentation system

UK may lose access to EU Galileo GPS system after Brexit

Falsifying Galileo satellite signals will become more difficult

SOLAR DAILY
Liquid hydrogen may be way forward for sustainable air travel

Russian Helicopters in talks with India for 200 aircraft

Alphabet's 'Loon' internet plan closer to deployment

Northrop Grumman demos 4th- and 5th-gen jet communications

SOLAR DAILY
Artificial synapse for neural networks

Particles from outer space are wreaking low-grade havoc on personal electronics

A new spin on electronics

Mail armor inspires physicists

SOLAR DAILY
In Atmospheric River Storms, Wind Is a Risk, Too

Sentinel-2 teams prepare for space

Earth Science on the Space Station continues to grow

Ancient Judea jars reveal earth's magnetic field is fluctuating, not diminishing

SOLAR DAILY
Tiny plastic particles from clothing, tyres clogging oceans: report

Underwater seagrass beds dial back polluted seawater

Polluted Indian lake catches fire

Trump's pick to head environment agency confirmed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.